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Abstract

We consider the problem of embedding general metrics into trees. We give the first non-trivial ap-
proximation algorithm for minimizing the multiplicative distortion. Our algorithm produces an embed-
ding with distortion(c log n)O(

√

log ∆), wherec is the optimal distortion, and∆ is the spread of the metric
(i.e. the ratio of the diameter over the minimum distance). We give an improvedO(1)-approximation
algorithm for the case where the input is the shortest path metric over an unweighted graph.

We also provide almost tight bounds for the relation betweenembedding into trees and embed-
ding into spanning subtrees. We show that for any unweightedgraphG, the ratio of the distortion
required to embedG into a spanning subtree, over the distortion of an optimal tree embedding ofG, is
at mostO(log n). We complement this bound by exhibiting a family of graphs for which the ratio is
Ω(log n/ log log n).
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1 Introduction

A low-distortion embedding between two metric spacesM andM ′ with distance functionsD andD′ is
a (non-contractive) mappingf such that for any pair of pointsp, q in the original metric, their distance
D(p, q) before the mapping is the same as the distanceD′(f(p), f(q)) after the mapping, up to a (small)
multiplicative factorc. Low-distortion embeddings have been a subject of extensive mathematical studies,
and found numerous applications in computer science (cf. [Lin02, Ind01]).

More recently, a few papers (cf. Figure 1) addressed therelative or approximation version of this
problem. In this setting, the question is: for a class of metricsC, and a host metricM ′, what is thesmallest
approximation factor a ≥ 1 of an efficient1 algorithm minimizing the distortion of embedding of a given
input metricM ∈ C into M ′ ? This formulation enables the algorithm to adapt to a given input metric. In
particular, if the host metric is ”expressive enough” to accurately model the input distances, the minimum
achievable distortion is low, and the algorithm will produce an embedding with low distortion as well.

This problem has been a subject of extensive applied research during the last few decades (e.g., see [MDS]
web page, or [KTT98]). However, almost all known algorithmsfor this problem are heuristic. As such, they
can get stuck in local minima, and do not provide any global guarantees on solution quality ([KTT98],
section 2).

In this paper we consider the problem of approximating minimum distortion for embedding general
metrics intotree metrics, i.e., shortest path metric over (weighted) trees. This is anatural problem with con-
nections and applications to many areas. The classic application is the recovery of evolutionary trees from
evolutionary distances between the data (e.g., see [Sci05], or [DEKM98], section 7.3). Another motivation
comes from computational geometry. Specifically, Eppstein([Epp00], Open Problem 4) posed a question
about algorithmic complexity of finding theminimum-dilation spanning tree of a given set of points in the
plane. This problem is equivalent (up to a constant factor inthe approximation factor) to a special case of
our problem, where the input metric is induced by points in the plane. Moreover, a closely related prob-
lem has been studied in the context of graph spanners [PU87, PR98]. Namely, the problem of computing
a minimum-stretch spanning tree of a graph can be phrased as the problem of computing the minimum
distortion embedding of a graph into a spanning subtree.

1.1 Our results

Our main results are the first non-trivial approximation algorithms for embedding into tree metrics, for mini-
mizing the multiplicative distortion. Specifically, if theinput metric is an unweighted graph, we give aO(1)-
approximation algorithm for this problem. For general metrics, we give an algorithm such that if the input
metric isc-embeddable into some tree metric, produces an embedding with distortionα(c log n)O(logα ∆),
for anyα ≥ 1. In particular, by settingα = 2

√
log ∆, we obtain distortion(c log n)O(

√
log ∆). Alternatively,

when∆ = nO(1), by settingα = nǫ, we obtain distortionnǫ(c log n)O(1/ǫ). This in turn yields anO(n1−β)-
approximation for someβ > 0, since it is always possible to construct an embedding with distortionO(n)
in polynomial time [Mat90].

Further, we show that by composing our approximation algorithm for embedding general metrics into
trees, with the approximation algorithm of [BCIS05] for embedding trees into the line, we obtain an
improved2 approximation algorithm for embedding general metrics into the line. The best known dis-
tortion guarantee for this problem [BCIS05] wascO(1)∆3/4, while the composition results in distortion

1That is, with running time polynomial inn, wheren is the number of points of the metric space.
2Strictly speaking, the guarantees are incomparable, but the dependence on∆ in our algorithm is a great improvement over the

earlier bound.
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Paper From Into Distortion Comments
[LLR94] general metrics L2 c uses SDP
[KRS04] line line c c is constant, embedding is a bijection

unweighted graphs bounded degree trees c c is constant, embedding is a bijection
[PS05] ℜ3 ℜ3

> (3 − ǫ)c hard to3-approximate, embedding is a bijection
[HP05] line line > n

Ω(1)
c = n

Ω(1), embedding is a bijection
[EP04] unweighted graphs sub-trees O(c log n)
[PT01] outerplanar graphs sub-trees c

[CC95] unweighted graphs sub-trees NP-complete
[FK01] planar graphs sub-trees NP-complete

[BDG+05] unweighted graphs line O(c2) implies
√

n-approximation
> ac hard toa-approximate for somea > 1

c c is constant
unweighted trees line O(c3/2

√
log c)

subsets of a sphere plane 3c

[BCIS06] ultrametrics ℜd
c
O(d)

[ABD+05] general metrics ultrametrics c

[BCIS05] general metrics line O(∆3/4
c
11/4)

weighted trees line c
O(1)

weighted trees line Ω(n1/12
c) hard toO(n1/12)-approximate even for∆ = n

O(1)

[LNP06] weighted trees Lp O(c)

Figure 1:Previous work on relative embedding problems for multiplicative distortion. We usec to denote the optimal distortion,

andn to denote the number of points in in the input metric. Note that the table contains only the results that hold for themultiplica-

tive definition of the distortion; there is a rich body of work thatapplies to other definitions of distortion, notably theadditive or

average distortion, see [BCIS05] for an overview.

(c log n)O(
√

log ∆). In fact, we provide a general framework for composing relative embeddings which could
be useful elsewhere.

For the special case where the input is an unweighted graph metric, we also study the relation between
embedding into trees, and embedding into spanning subtrees. An O(log n)-approximation algorithm is
known [EP04] for this problem. We show that if an unweighted graph metric embeds into a tree with
distortion c, then it also embeds into a spanning subtree with distortionO(c log n). We also exhibit an
infinite family of graphs that almost achieves this bound; each graph in the family embeds into a tree with
distortionO(log n), while any embedding into a spanning subtree has distortionΩ(log2 n/ log log n). We
remark that by composing the upper bound with ourO(1)-approximation algorithm for unweighted graphs,
we recover the result of [EP04]. Due to lack of space, we deferthe results on the relation between embedding
into trees, and embedding into spanning subtrees, to the full version of this paper.

1.2 Related Work

The study of the problem of approximating metrics by tree metrics has been initiated in [FCKW93, ABFC+96],
where the authors give anO(1)-approximation algorithm for embedding metrics into tree metrics. They also
provide exact algorithms for embeddings into simpler metrics, calledultrametrics. However, instead of the
multiplicative distortion (defined as above), their algorithms optimize the additive distortion; that is, the
quantitymaxp,q |D(p, q)−D′(p, q)|. The same problem has recently been studied also for the caseof min-
imizing theLp norm of the differences [HKM05, AC05]. In a recent paper [AC05], a (log n log log n)1/p-
approximation has been obtained for this problem.
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Minimizing the multiplicative distortion seems to be a harder problem in general. For example, embed-
ding into the line is hard tonΩ(1)-approximate for multiplicative distortion, and there is no known poly(c)-
approximation algorithm, while for additive distortion there exists a simple3-approximation.

The problem of embedding into a tree with minimum multiplicative distortion is closely related to the
problem of computing a minimum-stretch spanning tree. The two problems are identical for the case of com-
plete graphs. We mention the work of [PU87, CC95, VRM+97, PR98, PT01, FK01, EP04]. For unweighted
graphs, the best known approximation is anO(log n)-approximation algorithm [EP04]. Our algorithm for
unweighted graphs can be combined with our algorithm for converting an embedding into a tree into an
embedding into a spanning subtree, to give the same approximation guarantee (within constant factors).

The problem of approximating themultiplicative distortion of embeddings intoultrametrics has been
studied as well; there is a polynomial-time algorithm for solving this problem exactly [ABD+05]. Ultra-
metrics are useful for modeling evolutionary data, but theyare not as expressive as general tree metrics. In
particular, they form a proper subset of tree metrics. See [DEKM98] for a more detailed discussion.

1.3 Notation and Definitions

Graphs For a graphG = (V,G), andU ⊆ V (G), let G[U ] denote the subgraph ofG induced byU . For
u, v ∈ V (G) let DG(u, v) denote the shortest-path distance betweenu andv in G. We assume that all the
edges ofG have weight at least 1. IfG is weighted letWG denote the maximum edge weight ofG, and let
WG = 1 otherwise.

Metrics For any finite metric spaceM = (X,D), we assume that the minimum distance inM is at least
1. M is called atree metric iff it is the shortest-path metric of a subset of the verticesof a weighted tree. For
a graphG = (V,E), andγ ≥ 1 we say thatG γ-approximatesM if V (G) ⊆ X, and for eachu, v ∈ V (G),
D(u, v) ≤ DG(u, v) ≤ γD(u, v). We say thatM c-embeds into a tree if there exists an embedding of
M into a tree with distortion at mostc. When considering an embedding into a tree, we assume unless
stateted otherwise that the tree might contain steiner nodes. By a result of Gupta [Gup01], after computing
the embedding we can remove the steiner nodes losing at most aO(1) factor in the distortion (and thus also
in the approximation factor).

α-Restricted Subgraphs For a weighted graphG = (V,E), and forα > 0, theα-restricted subgraph of
G is defined as the graph obtained fromG after removing all the edges of weight greater thanα. Similarly,
for a metricM = (X,D), theα-restricted subgraph ofM is defined as the weighted graph on vertex setX,
where an edge{u, v} appears inG iff D(u, v) ≤ α, and the weight of every edge{u, v} is equal toD(u, v).

2 A Forbidden-Structure Characterization of Tree-Embeddability

Before we describe our algorithms, we give a combinatorial characterization of graphs that embed into trees
with small distortion. For anyc > 1, the characterization defines a forbidden structure that cannot appear in
a graph that embeds into a tree with distortion at mostc. This structure will be later used when analyzing
our algorithms to show that the computed embedding is close to optimal.

Lemma 1. Let G = (V,E) be a (possibly weighted) graph. If there exist nodes v0, v1, v2, v3 ∈ V (G), and
λ > 0, such that

• for each i : 0 ≤ i < 4, there exists a path pi, with endpoints vi, and vi+1 mod 4, and
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• for each i : 0 ≤ i < 4, DG(pi, pi+2 mod 4) > λWG,

then, any embedding of G into a tree has distortion greater than λ.

Proof. Let W = WG. Consider an optimal non-contracting embeddingf of G, into a treeT . For any
u, v ∈ V (G), let Pu,v denote the path fromf(u) to f(v), in T . For eachi, with 0 ≤ i < 4, defineTi as
the minimum subtree ofT , which contains all the images of the nodes ofpi. Since eachTi is minimum, it
follows that all the leaves ofTi are nodes off(pi).

Claim 1. For each i, with 0 ≤ i < 4, we have Ti =
⋃

{u,v}∈E(pi)
Pu,v.

Proof. Assume that the assertion is not true. That is, there existsx ∈ V (Ti), such that for any{u, v} ∈
E(pi), the pathPu,v does not visitx. Clearly,x /∈ V (pi), and thusx is not a leaf. LetT 1

i , T 2
i , . . . , T j

i , be
the connected components obtained by removingx from Ti. Since for every{u, v} ∈ E(pi), Pu,v does not
visit x, it follows that there is no edge{u, v} ∈ E(pi), with u ∈ T a

i , v ∈ T b
i , anda 6= b. This however,

implies thatpi is not connected, a contradiction.

Claim 2. For each i, with 0 ≤ i < 4, we have Ti ∩ Ti+2 mod 4 = ∅.

Proof. Assume that the assertion does not hold. That is, there exists i, with 0 ≤ i < 4, such thatTi ∩
Ti+2 mod 4 6= ∅. We have to consider the following two cases:

Case 1: Ti ∩ Ti+2 mod 4 contains a node from V (pi) ∪ V (pi+2 mod 4). W.l.o.g., we assume that
there existsw ∈ V (pi+2 mod 4), such thatw ∈ Ti ∩ Ti+2 mod 4. By Claim 1, it follows that there ex-
ists {u, v} ∈ E(pi), such thatf(w) lies on Pu,v. This impliesDT (f(u), f(v)) = DT (f(u), f(w)) +
DT (f(w), f(v)). On the other hand, we haveDG(pi, pi+2 mod 4) > λW , and sincef is non-contracting,
we obtainDT (f(u), f(v)) > 2λW . Thus,c ≥ DT (f(u), f(v))/DG(u, v). Since{u, v} ∈ E(G), and the
maximum edge weight inG is at mostW , we haveDG(u, v) ≤ W , and thusc > 2λ.

Case 2:Ti∩Ti+2 mod 4 does not contain nodes from V (pi)∪V (pi+2 mod 4). Let w ∈ Ti∩Ti+2 mod 4.
By Claim 1, there exist{u1, v1} ∈ E(pi), and{u2, v2} ∈ E(pi+2 mod 4), such thatw lies in bothPu1,v1,
andPu2,v2 . We haveDT (f(u1), f(v1)) + DT (f(u2), f(v2)) = DT (f(u1), f(w)) + DT (f(w), f(v1)) +
DT (f(u2), f(w))+DT (f(w), f(v2)) ≥ DT (f(u1), f(u2))+DT (f(v1), f(v2)) ≥ DG(u1, u2)+DG(v1, v2) ≥
2DG(pi, pi+2 mod 4) > 2λW . Thus, we can assume thatDT (f(u1), f(v1)) > λW . It follows that
c ≥ DT (f(u1),f(v1))

DG(u1,v1)
> λ.

Moreover, sincepi, andpi+1 mod 4, share an end-point, we haveTi ∩ Ti+1 mod 4 6= ∅. By Claim 2, it
follows, that

⋃3
i=0 Ti ⊆ T , contains a cycle, a contradiction.

3 Tree-Like Decompositions

In this section we describe a graph partitioning procedure which is a basic step in our algorithms. Intuitively,
the procedure partitions a graph into a set of clusters, and arranges the clusters in a tree, so that the structure
of the tree of clusters resembles the structure of the original graph.

Formally, the procedure takes as input a (possibly weighted) graphG = (V,E), a vertexr ∈ V (G), and
a parameterλ ≥ 1. The output of the procedure is a pair(TG

K ,KG), whereKG is a partition ofV (G), and
TG
K is a rooted tree with vertex setKG.

The partitionKG of V (G) is defined as follows. For integeri, let

Vi = {v ∈ V (G)|WG(i − 1)λ ≤ DG(r, v) < WGiλ}.
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Figure 2: An example of a tree-like decomposition of a graph.

Initially, KG is empty. Lett be the maximum index such thatVt is non-empty. LetYi =
⋃t

j=i Vj. For
eachi ∈ [t], and for each connected componentZ of G[Yi] that intersectsVi, we add the setZ ∩ Vi, to the
partitionKG. Observe that some clusters inKG might induce disconnected subgraphs inG.

TG
K can now be defined as follows. For eachK,K ′ ∈ KG, we add the edge{K,K ′} in TG

K iff there is
an edge inG between a vertex inK and a vertex inK ′. The root ofTG

K is the cluster containingr. The
resulting pair(TG

K ,KG) is called a(r, λ)-tree-like decomposition of G.
Figure 2 depicts the described decomposition.

Proposition 1. TG
K is a tree.

Proof. Let u, v ∈ V (G). SinceG is connected, there is a pathp from u to v in G. Let p = x1, . . . , x|p|.

For eachi ∈ {1, . . . , |p|}, let Ki ∈ KG be such thatxi ∈ Ki. It is easy to verify that the sequence{Ki}
|p|
i=1

contains a sub-sequence that corresponds to a path inTG
K . Thus,TG

K is connected.
It is easy to show by induction oni that for i = t, . . . , 1, the subsetLi ⊆ KG that is obtained by

partitioning
⋃t

j=i Vj , induce a forest inTG
K . SinceL1 = KG, andTG

K is connected, it follows thatTG
K is a

tree.

3.1 Properties of Tree-Like Decompositions

Before using the tree-like decompositions in our algorithms, we will show that for a certain range of the
decomposition parameters, they exhibit some usefull properties.

We will first bound the diameter of the clusters inKG. The intuition behind the proof is as follows. If
a clusterK is long enough, then starting from a pair of vertices inx, y ∈ K that are far from each other,
and tracing the shortest paths fromx andy to r, we can discover the forbidden structure of lemma 1 inG.
Applying lemma 1 we obtain a lower bound on the optimal distortion, contradicting the fact thatG embeds
into a tree with small distortion.

Lemma 2. Let G = (V,E) be a graph that γ-embeds into a tree, let r ∈ V (G), and let (TG
K ,KG) be a

(r, γ)-tree-like decomposition of G. Then, for any K ∈ KG, and for any u, v ∈ K , DG(u, v) ≤ 20γWG.

Proof. Assume that the assertion is not true, and pickK ∈ KG, and verticesx, y ∈ K, such thatDG(x, y) >
20γWG. Recall thatKG was obtained by partitioning the vertices ofG according to their distance fromr.
Let qx, andqy be the shortest paths fromx to r, and fromy to r respectively. LetK1, . . . ,Kτ be the branch in
TG
K , such thatr ∈ K1, andKτ = K. By the construction ofKG, we have that for anyi ∈ [τ ], for anyz ∈ Ki,

DG(r, z) ≤ iWGγ. Thus,DG(x, y) ≤ DG(x, r) + DG(r, y) ≤ 2τWGc. SinceDG(x, y) > 20γWG, it
follows thatτ > 10.

Consider now the sub-pathpx of qx that starts fromx, and terminates to the first vertexx′ of Kτ−2

visited byqx. Define similarlypy as the sub-path ofqy that starts fromy, and terminates to the first vertexy′
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of Kτ−2 visited byqy. We will first show thatDG(px, py) > γWG. Observe that by the construction ofKG,
we have thatDG(x, x′) ≤ 2γWG, and alsoDG(y, y′) ≤ 2γWG. Sincepx, andpy are shortest paths, we have
that for anyz ∈ px, DG(x, z) ≤ 2γWG, and similarly for anyz ∈ py, DG(y, z) ≤ 2γWG. Pick z ∈ px,
andz′ ∈ py, such thatDG(z, z′) is minimized. We haveDG(x, y) ≤ DG(x, z) + DG(z, z′) + DG(z′, y) ≤
DG(z, z′) + 4γWG. Thus,DG(px, py) = DG(z, z′) ≥ DG(x, y)− 4γWG > 20γWG − 4γWG = 16γWG.

Let now px′ be the remaining sub-path ofqx, starting fromx′, and terminating tor, and definepy ′

similarly. Letpxy be the path fromx′ to y′, obtained by concatenatingpx′, andpy ′.
By the construction ofKG it follows that if we remove fromG all the vertices in the setsK1,K3, . . . ,Kτ−1,

thenx andy remain in the same connected component. In other words, we can pick a pathpyx from x to
y, that does not visit any of the vertices in

⋃τ−1
j=1 Kj . It follows that the distance between any vertex ofpyx,

and any vertex in
⋃τ−2

j=1 Kj , is greater thanγWG. Thus,DG(pxy, pyx) > γWG.
We have thus shown that there are verticesx, y, y′, x′ ∈ V (G), and pathspx, py, pxy, pyx, satisfying the

conditions of Lemma 1. It follows that the optimal distortion required to embedG into a tree is greater than
γ, a contradiction.

Using the bound on the diameter of the clusters inKG, we can show that for certain values of the
parameters, the distances in the tree of clusters approximate the distances in the original graph.

Lemma 3. Let G = (V,E) be a graph that γ-embeds into a tree, let r ∈ V (G), and let (TG
K ,KG) be

a (r, γ)-tree-like decomposition of G. Then, for any K1,K2 ∈ KG, and for any x1 ∈ K1, x2 ∈ K2,
(DT G

K

(K1,K2) − 2)WGγ ≤ DG(x1, x2) ≤ (DT G
K

(K1,K2) + 2)20WGγ.

Proof. Let δ = DT G
K

(K1,K2). We begin by showing the first inequality. We have to considerthe following
cases:

Case 1:K1 and K2 are on the same path from the root to a leaf of TG
K . Let the path betweenK1 and

K2 in TG
K be K1,H1,H2, . . . ,Hδ−1,K2. Assume that the assertion is not true. That is,DG(x1, x2) <

(δ − 2)WGγ. Thus,DG(r, x2) ≤ DG(r, x1) + DG(x1, x2) < DG(r, x1) + (δ − 1)WGγ. Assume that
r ∈ Kr, for someKr ∈ KG, and w.l.o.g. thatK1 is an ancestor ofK2 in TG

K . Let the distance betweenKr

andK1 in TG
K bek. Then, the distance betweenKr andK2 is at mostk′ = k + DG(x1, x2)/(WGγ). This

implies thatδ = k′ − k < δ − 1, a contradiction.
Case 2: K1 and K2 are not on the same path from the root to a leaf of TG

K . Let Ka be the nearest
common ancestor ofK1 andK2 in TG

K . Observe that any path fromx to y in G passes throughKa. Thus,
we haveDG(x, y) ≥ DG(Kx,Ka) + DG(Ka,Ky). Let δi, for i ∈ {1, 2} be the distance betweenKa and
Ki in TG

K . Then, by an argument similar to the above, we obtain thatDG(Kx,Ka) ≥ (δ1 − 1)WGγ, and
alsoDG(Ky,Ka) ≥ (δ2 − 1)WGγ. SinceKa is the nearest common ansestor ofK1 andK2, it follows
thatKa reparatesK1 from K2 in G. Thus,DG(x, y) ≥ DG(Kx,Ky) ≥ DG(Kx,Ka) + DG(Ky,Ka) ≥
(δ − 2)WGc.

We now show the second inequality. Consider an edge{K,K ′} of TG
K . SinceK andK ′ are connected

in TG
K it follows that there exists an edge inG between a vertex inK and a vertex inK ′. Since the maximum

edge weight ofG is WG, we obtainDG(K,K ′) ≤ WG.
Since by Lemma 2, the diameter of eachK ∈ KG is at most20WGγ, it follows thatDG(x1, x2) ≤

δWG + (δ + 1)20WGγ < (δ + 2)20WGγ.
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4 Approximation Algorithm for Embedding Unweighted Graphs

In this section we give aO(1)-approximation algorithm for the problem of embedding the shortest path
metric of an unweighted graph into a tree. Informally, the algorithm works as follows. LetG = (V,E)
be an unweighted graph, such thatG can be embedded into an unweighted tree with distortionc. At a first
step, we compute a tree-like decomposition(TG

K ,KG) of G. For each cluster inKG we embed the vertices
of the cluster in a star. We then connect the starts to form a tree embedding ofG by connecting stars that
correspond to clusters that are adjancent inTG

K .
Formally, the algorithm can be described with the followingsteps.

Step 1. We pickr ∈ V (G), and we compute a(r, c)-tree-like decomposition(TG
K ,KG) of G.

Step 2. We construct a treeT as follows. LetKG = {K1, . . . ,Kt}. For eachi ∈ [t], we construct a star
with center a new vertexρi, and leaves the vertices inKi. Next, for each edge{Ki,Kj} in TG

K , we
add an edge{ρi, ρj} in T .

By proposition 1, we know that the resulting graphT is indeed a tree, so we can focus of bounding the
distortion ofT . By lemma 2, the diameter of each cluster inKG is at most20cWG = 20c. Let x1, x2 ∈
V (G), with x1 ∈ K1, andx2 ∈ K2, for someK1,K2 ∈ KG. We haveDT (x1, x2) = 2 + DT (ρ1, ρ2) =
2 + DT G

K

(K1,K2). By lemma 3 we obtain thatDT (x1, x2) ≤ 4 + DG(x1, x2)/c ≤ 5DG(x1, x2). Also by
the same lemma,DT (x1, x2) ≥ DG(x1, x2)/(20c). By combining the above it follows that the distortion is
at most100c.

Theorem 1. There exists a polynomial time, constant-factor approximation algorithm, for the problem of
embedding an unweighted graph into a tree, with minimum multiplicative distortion.

5 Well-Separated Tree-Like Decompositions

Before we describe our algorithm for embeddings general metrics, we need to introduce a refined decompo-
sition procedure. As in the unweighted case, we want to obtain a partition of the input metric space in a set
of clusters, solve the problem independetly for each cluster, and join the solutions to obtain a solution for
the input metric.

The key properties of the tree-like decomposition used in the case of unweighted graphs are the fol-
lowing: (1) the distances in the tree of clusters approximate the distances in the original graph, and (2) the
diameter of each cluster is small.

Observe that if the graph is weighted with maximum edge weight WG, and the clusters have small
diameter, then the distance between two adjacent clusters of a tree-like decomposition can be any value
between1 andWG. Thus, the tree of clusters cannot approximate the originaldistances by a factor better
thanWG.

We address this problem by introducing a new decomposition that alows the diameter of each cluster
to be arbitrary large, while guaranteeing that (1) the distance between clusters is sufficiently large, and (2)
after solving the problem independently for each cluster, the solutions can be merged together to obtain a
solution for the input metric.

Formally, letG = (V,E) be a graph thatγ-embeds into a tree. Let alsor ∈ V (G), andα ≥ 1 be a
parameter. Intuitively, the parameterα controls the distance between clusters in the resulting partition.

A (r, γ, α)-well-separated tree-like decomposition is a triple(TG
K ,KG,AG), were(TG

K ,KG) is a(r, γ)-
tree-like decomposition ofG, andAG is defined as follows.
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For a setA ⊆ V (G), let ZA = {K ∈ KG|K ∩A 6= ∅}. DefineTG,A
K to be the vertex-induced subgraph

TG
K [ZA].

Proposition 2. Let A ⊆ V (G), such that G[A] is connected. Then, TG,A
K is a subtree of TG

K

Proof. Deferred to the full version of this paper.

AG is computed in two steps:

Step 1. We define a partition̄AG. ĀG contains all the connected components ofG obtained after removing
all the edges of weight greater thanWG/(γ3/2α).

Step 2. We setAG := ĀG. While there existA1, A2 ∈ AG such that the diameter ofTG,A1

K ∩ TG,A2

K is
greater than50γ, we removeA1, andA2 from AG, and we addA1 ∪A2 in AG. We repeat until there
are no more such pairsA1, A2.

5.1 Properties of Well-Separated Tree-Like Decompositions

We now show the main properties of a well-separated tree-like decomposition that will be used by our
algorithm for embedding general metrics. They are summarized in the following two lemmata.

Intuitively, the first lemma shows that the distance betweendifferent clusters is sufficiently large, and at
the same time they don’t share long parts of the treeTG

K . The technical importance of the later property will
be justified in the next section. It worths mentioning however that intuitively, the fact that the intersections
are short will allow us to arrange the clusters ofAG in a tree, without intersections, incurring only a small
distortion.

Lemma 4. For any A1, A2 ∈ AG, DG(A1, A2) ≥ WG/(γ3/2α), and TG,A1

K ∩ TG,A2

K is a subtree of TG
K

with diameter at most 50γ.

Proof. For anyA1, A2 ∈ ĀG, we have thatD(A1, A2) ≥ WG/(γ3/2α). SinceAG is obtained by only
merging sets, the first property holds. Moreover, the construction ofAG clearly terminates, and the second
property follows by the termination condition of the construction procedure.

The next lemma will be used to argue that when recursing in a cluster, the corresponding induced metric
can be sufficiently approximated by a graph with small maximum edge weight.

Lemma 5. For any A ∈ AG, the WG/(γ1/2α)-restricted subgraph of G[A], is connected.

Proof. For an embedding ofG into a treeT , and for disjointA1, A2 ⊂ V (G), we say thatA1 splits A2 in
T , if A2 intersects at least 2 connected components ofT [V (G) \ A1].

Claim 3. Let A1, A2 ⊂ V (G), with A1 ∩A2 = ∅, such that G[A1], and G[A2] are both connected. Assume
that the diameter of TG,A1

K ∩ TG,A2

K is greater than 50γ. Consider an optimal non-contracting embedding
of G into a tree T , with distortion γ. Then, either A1 splits A2 in T , or A2 splits A1 in T .

Proof. SinceG[A1], andG[A2] are both connected, it follows by Proposition 2 thatTG,A1

K , andTG,A2

K are
both connected subtrees ofTG

K . Pick a pathp = K1,K2, . . . ,Kl in TG
K , with l > 50γ, that is contained in

TG,A1

K ∩ TG,A2

K .
Assume that the assertion is not true. LetA′

1 = A1 ∩ (
⋃l

i=1 Ki), and letA′
2 = A2 ∩ (

⋃l
i=1 Ki). Let T1

be the minimum connected subtree ofT that containsA′
1, and similarly letT2 be the minimum connected

subtree ofT that containsA′
2. It follows thatT1 ∩ T2 = ∅.

8



Figure 3: Case 2 of the proof of Lemma 5.

Let x1 be the unique vertex ofT1 which is closest toT2. SinceT1 is minimal, x1 disconnectsT1.
Moreover, sinceG[A1] is connected, it follows that there exists{w,w′} ∈ E(G), such that the path from
w to w′ in T passes throughx1. SinceDG(w,w′) ≤ WG, we obtain that there existsx∗

1 ∈ {w,w′}, with
DT (x∗

1, x1) ≤ DT (w,w′)/2 ≤ γDG(w,w′)/2 ≤ γWG/2.
By Lemma 2, it follows that for anyx ∈ A′

1, there existsx′ ∈ A′
2, such thatDG(x, x′) ≤ 20WGγ.

Moreover, for anyx ∈ A′
1, DT (x, T2) = DT (x, x1) + DT (x1, T2). Thus, for anyx ∈ A′

1, DT (x, x∗
1) ≤

DT (x1, x
∗
1) + DT (x, x1) ≤ γWG/2 + DT (x, T2) ≤ γWG/2 + γDG(x,A′

2) ≤ 21WGγ2.
Pickz ∈ A′

1∩K1, andz′ ∈ A′
1∩Kl. By the triangle inequality,DT (z, z′) ≤ DT (z, x∗

1)+DT (x∗
1, z

′) ≤
42WGγ2. On the other hand, the distance betweenK1, andKl in TG

K is l− 1. Thus, by Lemma 3 we obtain
thatDG(z, z′) ≥ (l − 3)WGγ > 45WGγ2, which contradicts that fact that the embedding ofM into T is
non-contracting.

Fix an optimal non-contracting embedding ofG into a treeT , with distortionγ.
Fork ≥ 0, letAk

G be the partitionAG afterk iterations of Step 2 have been performed, withA0
G = ĀG.

Assume that the assertion is not true, and pick the smallestk, such that there existsA ∈ Ak
G, such

that theWG/(γ1/2α)-restricted subgraph ofG[A] is not connected. Assume thatA is obtained by joining
A1, A2 ∈ Ak−1

G . By the minimality ofk, it follows that theWG/(γ1/2α)-restricted subgraphs ofG[A1], and
G[A2] respectively are connected. Thus,DG(A1, A2) > WG/(γ1/2α).

By claim 5, we can assume w.l.o.g. thatA2 splits A1. Thus, by removingA2 from T , we obtain a
collection of connected componentsF1. Consider the partitionF ′

1 of A1 defined by restrictingF1 on A1.
Formally,F ′

1 = {f ∩ A1|f ∈ F1, f ∩ A1 6= ∅}. We have to consider the following cases:
Case 1: There exists Z ∈ ĀG, with Z ⊆ A1, such that Z intersects at least two sets in F ′

1. By
considering only edges of weight at mostWG/(γ3/2α), the induced subgraphG[Z] is connected. It follows
that there existz1, z2 ∈ Z, with DG(z1, z2) ≤ WG/(γ3/2α), such that the path fromz1 to z2 in T passes
throughA2. Thus,DT (z1, z2) ≥ 2DG(A1, A2) > 2WG/(γ1/2α) ≥ 2γD(z1, z2), contradicting the fact
that the expansion ofT is at mostγ.

Case 2:For any Z ∈ ĀG, with Z ⊆ A1, we have Z ⊆ Z ′, for some Z ′ ∈ F ′
1. Observe that for antt ≥ 0,

any element inAt
G is obtained as the union of elements ofĀG. Thus, we can pick the minimumj ≥ 1, such

that there existB1, B2 ∈ Aj−1
G , such that during iterationj of Step 2, the setB = B1 ∪ B2 is obtained,

with B ⊆ A1, and such thatB1 ⊆ Z ′
1, andB2 ⊆ Z ′

2, for someZ ′
1, Z

′
2 ∈ F ′

1, In other words, we pick the
minimumj such that we can find setsB1, B2 ∈ Aj−1

G , that are contained inA2, and neither of them is split
by A2 in T . W.l.o.g., we can assume thatB2 splitsB1 in T . Thus, there existC1, C2 ⊆ B1, such that any
path betweenC1 andC2 in T passes throughB2. Moreover, any path fromB1 to B2 in T passes through
A2. Thus, any path fromC1 to C2 in T passes throughA2. This however contradicts the minimality ofj.
The scenario is depicted in Fig 3.
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6 Approximation Algorithm for Embedding General Metrics

In this section we present an approximation algorithm for embedding general metrics into trees. Before
we get into the technical details of the algorithm, we give aninformal description. The main idea is to
partition the input metricM using a well-separated tree-like decomposition, and then solve the problem
independently for each cluster of the partition by recursion. After solving all the sub-problems, we can
combine the partial solutions to obtain a solution forM . There are a few points that need to be highlighted:

Termination of the recursion. As pointed out in the description of the well-separated tree-like decom-
positions, the clusters of the resulting partition might have arbitrarily long diameter. In particular, we cannot
guarantee that by recursively decomposing each cluster we obtain sub-clusters of smaller diameter. To that
extend, our recursion deviates from standard techniques since the sub-problems are not necessarily smaller
in a usual sense. Instead, our decomposition procedure guarantees that at each recursive step, the metric of
each cluster can be approximated by a graph with smaller maximum edge length. This can be thought as
restricting the problem to a smaller metric scale.

Merging the partial solutions. The partial solution for each cluster in the recursion is an embedding
of the cluster into a tree. As in the algorithm for unweightedgraphs, we merge the partial solutions using
the treeTG

K of the well-separated tree-like decomposition as a rough approximation of the resulting tree.
However, in the case of a well-separated decomposition, theparts ofTG

K that correspond to different clusters
of the partitionAG might overlap. Moreover, since some of the clusters might belong, we need to develop
an elaborate procedure for merging the different trees intoa tree forM , without incurring large distortion.

6.1 The Main Inductive Step

We will now describe the main inductive step of the algorithm. Let M = (X,D) be a finite metric thatc-
embeds into a tree. At each recursive step performed on a clusterA∗ of M , the algorithm is given a graphG
with vertex setA, thatc-approximatesM . In order to recurse in sub-problems, we compute a well-separated
tree-like decomposition ofG. We chose the parameters of the well-separated decomposition so that each
sub-clusterA, can bec-approximated by a graph that has maximum edge weight significantly smaller than
the maximum edge weight ofG. Formally, the main recursive step is as follows.

Procedure RECURSIVETREE

Input: A graphG with maximum edge weightWG, thatc-approximatesM .

Output: An embedding ofG into a treeS.

Step 1: Partitioning. If G contains only one vertex, then we output a trivial tree containing only this vertex.
Otherwise, we proceed as follows. We pickr ∈ V (G), and compute a(r, c2, α)-well-separated tree-
like decomposition(TG

K ,KG,AG) of G, whereα > 0 will be determined later.

Step 2: Recursion.For anyA ∈ AG, let GA be theWG/α-restricted subgraph, withV (GA) = A. We
recursively execute the procedure RECURSIVETREE onGA, and we obtain a treeSA.

Step 3: Merging the solutions.In this final step we merge the treesSA to obtainS.

We define a treeT as follows. We first remove fromTG
K all the edges between vertices at leveli50c2,

andi50c2 + 1, for any integeri : 1 ≤ i ≤ n/(50c2). For any connected componentC of the resulting
forest,T contains a vertexC. Two verticesC,C ′ ∈ V (T ) are connected, iff there is an edge between
C, andC ′ is TG

K . We considerT to be rooted at the vertex which corresponds to the subtree ofTG
K

10



that containsr. Furthermore, for eachAi ∈ AG, we define a subtreeTi of T as follows:Ti contains
all the verticesC of T , such thatTG,Ai

K visitsC.

Lemma 6. There exists a polynomial-time algorithm that computes an unweighted tree T ′, and for
any i ∈ [k] a mapping φi : V (Ti) → V (T ′), such that

• for any i, j ∈ [k], φi(Ti) ∩ φj(Tj) = ∅,

• for any i, j ∈ [k], for any vi ∈ V (Ti), and vj ∈ V (Tj), DT (vi, vj) ≤ DT ′(φi(vi), φj(vj)) ≤
20(DT (vi, vj) + 1) log n.

Proof. Deferred to the full version of this paper.

Note that the treeT ′ might contain verticesC ∈ V (T ), such that for anyK ∈ KG, K /∈ C. We call
such a vertexsteiner. First, for each steiner vertexC ∈ V (T ′) we add a vertexvC ∈ V (S). We have
to add the following types of edges:

• For anyC1, C2 ∈ V (T ′), such that bothC1, and C2 are steiner vertices, we add the edge
{vC1 , vC2} in S, with weightWG/(c3α).

• For anyC1, C2 ∈ V (T ′), such thatC2, is a steiner vertex, and there existsA1 ∈ AG, such that
C1 ∈ φ1(T1), we pickK1 ∈ TG,A1

K , with K1 ∈ C1, and an arbitraryx1 ∈ K1, and we add the
edge{x1, vC1} in S. The weight of this new edge isWG/(c3α).

• For any pairA1, A2 ∈ AG, with A1 6= A2, such that there exists an edge inT ′ connecting
φ1(T1) with φ2(T2), we add an edge betweenSA1 , andSA2 . We pick the edge that connects
SA1 with SA2 as follows. PickC1, C2 ∈ V (T ), with C1 ∈ T1, andC2 ∈ T2, such that there
is an edge betweenφ1(C1), andφ2(C2) in T ′. We pick an arbitrary pair of pointsx1, x2, with
x1 ∈ K1 ∈ C1, andx2 ∈ K2 ∈ C2, for someK1,K2 ∈ KG, and we connectSA1 with SA2 by
adding the edge{x1, x2} of lengthD(x1, x2).

Given the metricM = (X,D), the algorithm first computes a weighted complete graphG0 = (V,E),
with V (G0) = X, such that the weight of each edge{u, v} ∈ E(G) is equal toD(u, v). Let ∆ be
the diameter ofM . Clearly, G0 is a ∆-restricted subgraph. The algorithm then executes the procedure
RECURSIVETREE onG0, and outputs the resulting treeS.

Before we bound the distortion of the resulting embedding, we first need to show that at each recursive
call of the procedure RECURSIVETREE, the graphG satisfies the input requirements. Namely, we have
to show thatG c-approximatesM . Clearly, this holds forG0. Thus, it suffices to show that the property
is maintained for each graphGA, wereA ∈ AG. Observe that sinceG c-approximatesM , andM c-
embeds into a tree, it follows thatG c2-embeds into a tree. Since(TG

K ,KG,AG) is a(r, c2)-well-separated
decomposition, we can assume the properties of lemmata 4, and 5, forγ = c2.

Lemma 7. For any A ∈ AG, GA c-approximates M .

Proof. Deferred to the full version of this paper.

The next two lemmata bound the distortion of the resulting embedding ofG into S. The fact that the
contraction is small follows by the fact that the distance between the clusters inAG is sufficiently large.
The expansion on the other hand, depends on the maximum depthof the recursion. This is because at each
recursive call, when we merge the treesSA to obtainS, we incurr an extracO(1) log n-factor in the distortion.
Since at every recursive call the maximum edge weight of the input graph decreases by a factor ofα, the
parameterα can be used to adjust the recursion depth in order to optimizethe final distortion.
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Lemma 8. The contraction of S is O(c7α).

Proof. Deferred to the full version of this paper.

Lemma 9. The expansion of S is at most (cO(1) log n)logα ∆.

Proof. Deferred to the full version of this paper.

Theorem 2. There exists a polynomial-time algorithm which given a metric M = (X,D) that c-embeds
into a tree, computes an embedding of M into a tree, with distortion (c log n)O(

√
log ∆).

Proof. By Lemmata 8, and 9, it follows that the distortion ofS is cO(1)α(cO(1) log n)logα ∆. By setting
α = 2

√
log ∆, we obtain that the distortion is at most(c log n)O(

√
log∆).

Acknowledgments We thank Julia Chuzhoy for many insightful discussions about the problem.
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A The Relation Between Embedding Into Trees and Embedding Into Sub-
trees

In this section we study the relation between embedding intotrees, and embedding into spanning subtrees.
More specifically, letG = (V,E) be an unweighted graph. Assume thatG embeds into a tree with distortion
c, and also thatG embeds into a spanning subtree with distortionc∗.

Clearly, since every spanning subtree is also a tree, we havec ≤ c∗. We are interested in determining
how large the ratioc∗/c can be. We show that for everyn0, there existsn ≥ n0, and ann-vertex unweighted
subgraphG, for which the ratio isΩ(log n/ log log n). We complement this lower bound by showing that
for every unweighted graphG, the ratio is at mostO(log n).

A.1 The Lower Bound

In this section we prove a gap between the distortion of embedding graph metrics into trees, and into span-
ning subtrees. We do this by giving an explicit infinite family of graphs.

Let n > 0 be an integer. We define inductively an unweighted graphG = (V,E) with Θ(n) vertices,
and prove thatG O(log n)-embeds into a tree, while any embedding ofG into a subtree has distortion
Ω(log2 n/ log log n).

Let G1 be a cycle onlog n vertices. We say that the cycle ofG1 is at level 1. GivenGi, we obtainGi+1

as follows. For any edge{u, v} that belongs to a cycle at leveli, but not to a cycle at leveli − 1, we add a
pathpu,v of lengthlog n− 1 betweenu andv. We say that the resulting cycle induced by pathpu,v and edge
{u, v} is at leveli + 1.

Let G = Glog n/ log log n. It is easy to see that|V (G)| = Θ(n). Moreover, every edge ofG belongs to
either only one cycle of sizelog n at levellog n/ log log n, or exactly two cycles of sizelog n; one at level
i, and one at leveli + 1, for somei, with 1 ≤ i < log n/ log log n.

We associate withG a treeTC = (V (TC), E(TC )), such thatV (TC) is the set of cycles of lengthlog n
of G, and{C,C ′} ∈ E(TC) iff C andC ′ share an edge. We considerTC to be rooted at the unique cycle of
G at level 1.

Lemma 10. Any embedding of G into a subtree has distortion Ω(log2 n/ log log n).

Proof. Let T be a spanning subtree ofG. Let k = log n/ log log n. We will compute inductively a set of
cyclesC, while maintaining a set of edgesE′ ⊆ E(G). Initially, we setC = C1, whereC1 is the cycle ofG
at level 1, andE′ = ∅. At each iteration, we consider the subgraph

G′ =

(

⋃

C∈C
C

)

\ E′.

We pick a cycleC /∈ C, such thatC shares an edgee with G′, and we addC in C, ande in E′. Observe
that at every iterationG′ is a cycle. Thus, we can picke andC such thate /∈ T . The process ends when we
cannot pick any more suche andC, with e /∈ T .

Consider the resulting graphG′ =
(
⋃

C∈C C
)

\ E′. SinceG′ is a cycle, it follows that there exists an
edgee′ = {u, v} ∈ G′, such thate′ /∈ T . Since there is no cycleC ′ /∈ C, with e′ ∈ C ′, it follows that
e′ belongs to a cycle at levelk. Thus, there exists a sequence of lengthlog n cycles,K1, . . . ,Kk, with
K1 = C1, andKk = C ′, and such thatKi ∈ C, for eachi, with 1 ≤ i ≤ k, and the there exists a common
edgeei ∈ E′ in Ki andKi+1, for eachi, with 1 ≤ i < k.

15



Consider the sequence of graphs obtained fromG after removing the edgese′, ek−1, ek, . . . , e1, in this
order. It is easy to see that after removing each edge, the distance betweenu andv in the resulting graph
increases by at leastΩ(log n). Since none of there edges is inT , it follows that the distance betweenu and
v in T is at leastk log n = log2 n/ log log n.

Lemma 11. There exists an embedding of G into a tree, with distortion O(log n).

Proof. We will construct a treeT = (V (T ), E(T )) as follows: Initially, we setV (T ) = V (G), and
E(T ) = ∅. For the cycleC1 at level 1, we pick an arbitrary vertexvC1 ∈ C1. Next, for eachu ∈ C1, with
u 6= vC1 , we add an edge betweenu andvC1 in T of lengthDG(u, vC1).

For every other cycleC ′ at some leveli > 1, let e′ = {u′, v′} be the unique edge thatC ′ shares with a
cycleC ′′ at leveli − 1. We pick a vertexvC′ arbitrarily between one of the two endpoints ofe′. For every
vertexx ∈ C ′, with x 6= vC′ , we add an edge betweenx andvC′ in T , of lengthDG(x, vC′).

Clearly, the resulting graphT is a tree. It is straightforward to verify that for every{u, v} ∈ E(T ),
DT (u, v) = DG(u, v), and thus the resulting embedding is non-contracting. It remains to bound the expan-
sion for any pair of verticesx, y ∈ V (G). We will consider the following cases.

Case 1. There exists a cycleC ∈ V (TC), such thatx, y ∈ C: We have

DT (x, y) = DT (x, vC) + DT (vC , y)

= DG(x, vC) + DG(vC , y)

< log n

≤ DG(x, y) log n

Case 2. There existCx, Cy ∈ V (TC), with x ∈ Cx, andy ∈ Cy, such thatCy lies on the path inTC from
Cx to the root ofTC : Consider the pathK1, . . . ,Kl in TC , with Cx = K1, andCy = Kl. For eachi,
with 1 ≤ i < l, let ei = {xi, yi} ∈ E(G) be the common edge ofKi andKi+1. Note that the shortest
pathp from x to y in G visits at least one of the endpoints of each edgeei. Assume w.l.o.g. thatp
visits x1, x2, . . . , xl−1 (in this order). Observe that eachi, with 1 ≤ i < l, for eachv ∈ Ki we have
eitherDT (xi, v) = DG(xi, v), or DT (xi, v) = DG(xi, yi) + DG(yi, v) ≤ DG(xi, v) + 2. Thus, we
obtain

DT (x, y) ≤ DT (x, x1) + DT (x1, x2) + . . . + DT (xl−2, xl−1) + DT (xl−1, y)

< DG(x, x1) + DG(x1, x2) + . . . + DG(xl−2, xl−1) + 2(l − 2) + DG(xl−1, y) + log n/2

< DG(x, y) + 2 log n/ log log n + (log n)/2

< DG(x, y)3 log n

Case 3. There existCx, Cy, Cz ∈ V (TC), with x ∈ Cx, andy ∈ Cy, such thatCz is the nca ofCx andCy

in TC : This Case is similar to Case 2.

Theorem 3. For every n0 > 0, there exists n ≥ n0, and an n-vertex unweighted graph G, such that the
minimum distortion for embedding G into a tree is O(log n), while the minimum distortion for embedding
G into any of its subtrees is Ω(log2 n/ log log n).

Proof. It follows by Lemmata 10 and 11.
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A.2 The Upper Bound

We now complement the lower bound given above with an almost matching upper bound for unweighted
graphs. The idea is to first use theO(1)-approximation algorithm from Section 4 for embedding unweighted
graphs into trees to obtain the clusteringKG. Then, by slightly modifying this clustering, we can guarantee
that each cluster induces a connected subgraph of the original graph, and thus it can be easily embedded into
a spanning subtree. Next, for each cluster we define a new randomly chosen clustering. This new clustering
will be used in the final step to merge the computed subtrees ofthe clusters, into a spanning subtree of the
graph, while losing only aO(log n) factor in the distortion.

Let G = (V,E) be an unweighted graph, that embeds into an unweighted tree with distortionc. For a
subsetV ′ ⊆ V (G), and for everyu, v ∈ V ′, we denote byDV ′(u, v) the shortest path distance betweenu
andv in G[V ′]. If G[V ′] is disconnected, we can assume thatDV ′(u, v) = ∞.

Consider the set tree-like partition(TG
K ,KG) constructed by the algorithm of Section 4. LetKG =

{Kr1 ,Kr2 , . . .}, and assume thatTG
K is rooted atKr.

Let FK be the forest obtained by removing fromTG
K all the edges between vertices at levels21j and

21j + 1, for all j, with 1 ≤ j < ⌊depth(TG
K )/21⌋ − 1. Let C(FK) be the set of connected components of

FK. Let

J =
⋃

A∈C(FK)







⋃

Ki∈A

Ki







.

Clearly,J is a partition ofV (G). Let TJ be the tree on vertex setJ , where the edge{Ji, Jj} is in TJ if
there exist{Ki′ ,Kj′} ∈ E(TG

K ), such thatKi′ ∈ Ji, andKj′ ∈ Jj . We considerTJ as being rooted at a
vertexJr ∈ J , whereKr ∈ Jr.

Lemma 12. For each Ji ∈ J , G[Ji] is connected.

Proof. Assume w.l.o.g., thatJi is the union of sets of verticesKj , for all Kj ∈ A, whereA ∈ C(FK) is a
subtree ofTJ . Assume thatKr′ is the vertex ofA that is closest toKr in TG

K . Let pl be the unique path in
A from Kr′ to a leafKl of A. Let alsoJ l

i =
⋃

Kk∈pl
Kk. It suffices to show that for each leafl, the induced

subgraphG[J l
i ] is connected.

Let pl = K1,K2, . . . Kt, whereKr′ = K1, andKl = Kt. Note thatt ≥ 21. Assume now thatG[J l
i ] is

disconnected, and letC(G[J l
i ]) be the set of connected components ofG[J l

i ].

Claim 4. There exists t′, with 1 ≤ t′ ≤ t, and C1 6= C2 ∈ C(G[J l
i ]), such that Kt′ ∩ C1 6= ∅, and

Kt′ ∩ C2 6= ∅.

Proof. Assume that the assertion in not true. That is, for eacht′, with 1 ≤ t′ ≤ t, Kt′ is contained in a
connected componentC ′

t′ ∈ C(G[J l
i ]). Observe that for eacht′′, with 1 ≤ t′′ < t, there exists at least one

edge betweenKt′′ andKt′′+1. This means that all theC ′
t′s are in fact the same connected component, and

thusC(G[J l
i ]) contains a single connected component. It follows thatJ l

i is connected, a contradiction.

Claim 5. There exist C1, C2 ∈ C(G[J l
i ]), such that K11 ∩ C1 6= ∅, and K11 ∩ C2 6= ∅.

Proof. Let t′, with 1 ≤ t′ ≤ t, andC1, C2 ∈ C(G[J l
i ]) be given by Claim 3. Ift′ = 11, then there is nothing

to prove.
Otherwise, pickv1 ∈ Kt′ ∩ C1, andv2 ∈ Kt′ ∩ C2. By the construction ofK, we have that there exists

a pathp from v1 to v2, such thatp is the concatenation of the pathsqt′ , . . . , q1, q, q
′
1, . . . , q

′
t′ , where for each
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i ∈ [1, t′], qi andq′i are paths of length at mostc in Ki. Moreover, there exists a path̄p from v1 to v2, such
that p̄ is the concatenation of the pathswt′ , . . . , wt, w,w′

t, . . . , w
′
t′ , where for eachi ∈ [t′, t], wi andw′

i are
paths of length at mostc in Ki.

If t′ > 11, then pickv′1 ∈ q11, andv′2 ∈ q′11. Otherwise, ift′ < 11, pick w′
1 ∈ q11, andv′2 ∈ w′

11.
Clearly, in both cases we havev′1 ∈ C1, andv′2 ∈ C2.

Let nowC1, C2 ∈ C(G[J l
i ]) be the connected components given by Claim 4. Pickv1 ∈ Kt′ ∩ C1, and

v2 ∈ Kt′ ∩ C2. Let p be the shortest path betweenv1 andv2 in G. We observe that there are two possible
cases forp:

Case 1:p is the concatenation of the pathsq11, . . . , q1, q, q
′
1, . . . , q

′
11, where for eachi ∈ [1, 11], qi andq′i

are contained inKi.

Case 2:p is the concatenation of the pathsq11, . . . , qt, q, q
′
t, . . . , q

′
11, where for eachi ∈ [11, t], qi andq′i

are contained inKi.

Since the above two Cases can be analyzed identically, we assume w.l.o.g. thatp satisfies Case 1. Observe
that for eachi ∈ [1, 11), eachqi and eachq′i visits c vertices ofKi. It follows that the length ofp is greater
than20c, contradicting Lemma 2.

For eachJi ∈ J , we define a setJi of subsets ofJi as follows. First, we pick a vertexri ∈ Ji, and we
construct a BFS treeTJi of G[Ji], rooted atri. Note that by Lemma 12,G[Ji] is connected, and thus there
exists such a BFS tree. We also pick an integerαJi ∈ [0, 100c), uniformly at random. LetFJi be the forest
obtained fromTJi by removing the edges between vertices at levels100cj + αJi and100cj + αJi + 1, for

all j, with 1 ≤ j <

⌊

depth(TJi
)

100c

⌋

− 2. The setJi can now be defined as the set of sets of vertices of the

connected components ofFJi . Clearly,Ji is a partition ofJi.

Lemma 13. For each Ji, Jj ∈ J , such that Ji is the parent of Jj in TJ , and for each Jj,k ∈ Jj , there exist
u ∈ Ji, and v ∈ Jj,k, such that {u, v} ∈ E(G).

Proof. It is easy to verify by the construction ofKG thatJj is a subset of the vertices of at least21c, and at
most42c consecutive levels of a BFS tree ofG. Let l1, . . . , lt be these levels, wherel1 is the level closest to
the root of the BFS tree ofG. For every vertexx ∈ Jj , there exists a vertexy ∈ Ji, such that{x, y} ∈ E(G),
iff x ∈ l1. Thus, it suffices to show that for everyJj,k ∈ Jj , Jj,k ∩ l1 = ∅.

It is easy to verify that for everyv ∈ Jj , there existsu ∈ l1, such thatDJj(v, u) < 42c. In the
construction ofJj , we pick a vertexrj ∈ Jj , and we compute a BFS treeT ′ of GJj . EveryJj,k ∈ Jj is
a subtreeTj,k of T ′ rooted at a vertexrj,k. Tj,k contains all the predecessors ofrj,k that are at distance at
mostδj,k, for some100c ≤ δj,k ≤ 200c. Assume now that there is no vertex ofl1 in the42c first levels of
Tj,k. Pick a vertex ofTj,k at level42c + 1. By the above argument, there exists a vertexu ∈ l1 that is at
distance at most42c from v. This implies thatu is contained within the84c + 1 first levels ofTj,k. Thus,
Tj,k ∩ l1 6= ∅, andJj,k ∩ l1 6= ∅.

Lemma 14. For each Ji, Jj ∈ J , such that Ji is the parent of Jj in TJ , and for each u, v ∈ Ji, and
u′, v′ ∈ Jj , such that {u, u′} ∈ E(G), and {v, v′} ∈ E(G), DJi(u, v) ≤ 90c.

Proof. Note that the partitionKG is obtained on a BFS tree ofG with root somer ∈ V (G). If r ∈ Ji, then
DJi(u, v) ≤ DJi(u, r) + DJi(r, v) ≤ 84c.
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It remains to consider the caser /∈ V (G). This implies that there existsJk ∈ J , such thatJk is the
parent ofJi in TJ . Assume that the assertion is not true. That is, there existu, v ∈ Ji, andu′, v′ ∈ Jj ,
with {u, u′} ∈ E(G), {v, v′} ∈ E(G), andDJi(u, v) > 90c. By the construction ofKG, and sincer /∈ Ji

it follows that there existw, z ∈ Ji, andw′, z′ ∈ Jk, with {w,w′} ∈ E(G), and{z, z′} ∈ E(G), and
moreover there exists a shortest pathp1 in G from w to u, and a shortest pathp2 from v to z in G, such that
p1 andp2 are contained inJi. It is easy to verify that the length of each of the pathsp1 andp2 is at least22c.

Furthermore, there exists a pathp3 from w′ to z′, and a pathp4 from u′ to v′, such that bothp3 andp4

do not visitJi. Let p′3 be the path obtained fromp3 by adding the edges{w,w′}, and{z′, z}. Similarly, let
p′4 be the path obtained fromp4 by adding the edges{u, u′}, and{v′, v}.

Let x1 be a vertex ofp1 such thatDG(x1, u) > 5c, andDG(x1, w) > 5c. Similarly, letx2 be a vertex
of p2 such thatDG(x2, v) > 5c, andDG(x2, z) > 5c. We need to define the following set of paths:

• Let q1 be the subpath ofp1 from u to x1.

• Let q2 be the path obtained by concatenating the subpath ofp1 from x1 to w, with p3.

• Let q3 be the subpath ofp2 from z to x2.

• Let q4 be the path obtained by concatenating the subpath ofp2 from x2 to v, with p4.

It is straight-forward to verify thatDG(q1, q3) > 5c, andD(q2, q4) > 5c. By applying Lemma 1, we obtain
that the optimal distortion for embeddingG into an unweighted tree is more than5c, a contradiction.

Theorem 4. If an unweighted graph G can be embedded into a tree with distortion c, then G can be
embedded into a subtree with distortion O(c log n).

Proof. We can compute an embedding ofG into a subtreeT as follows. Initially, we setT equal to the
empty subgraph. We pick a vertexr ∈ V (G), and we compute a(r, c)-partition of G. We compute the
partitionJ , and for eachJi ∈ J , we compute the partitionJi, as described above. For eachJi ∈ J , and
for eachJi,j ∈ Ji, we add toT a spanning tree ofJi,j of radiusO(c).

It remains to connect the subtrees by adding edges between the setsJi,j . Observe that ifr ∈ Ji, thenJi

contains a single setJi,j .
Assume now thatr /∈ Jj , and letJi be the parent ofJj in TJ . By Lemma 13, for eachJj,k ∈ Jj, there

an edge betweenJj,k andJi in G. For each suchJj,k, we pick one such edge, uniformly at random, and we
add it toT .

Consider now two subsetsJj,k, Jj,l ∈ Jj. It is easy to see thatJj,k, andJj,l get connected to the same
subsetJi,t ∈ Ji, with probability at leat1 − 90c

100c = Ω(1). Thus, the probability that two such subsets have
not converged to the same subset in an ancestor afterO(log n) levels is at most1/poly(n). Since there are
at mostn2 pairs of such subsetsJi,j, it follows that the above procedure results in a tree with distortion
O(c log n) with high probability.
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B Well-Separated Tree-Like Decompositions – Omitted Proofs

B.1 Proof of Proposition 2

SinceG[A] is connected, it suffices to show that any edgee of G is either contained in someK ∈ KG, or
the end-points ofe are contained in setsK,K ′ ∈ KG, such that there is an edge betweenK andK ′ in TG

K .
Assume that this is not true, and pick an edge{v1, v2} ∈ E(G), with v1 ∈ K1, andv2 ∈ K2, for some
K1,K2 ∈ KG, such that there is no edge betweenK1 andK2 in TG

K .
Let Kr ∈ KG be such thatr ∈ Kr. Assume first thatK1 is on the path fromK2 to Kr ∈ KG in TG

K .
This implies however thatD(v1, v2) > WG, contradicting the fact that{v1, v2} ∈ E(G).

It remains to consider the case whereK1 is not in the path fromK2 to Kr, andK2 is not in the path
from K1 to Kr in TG

K . Then by the construction ofKG we know that any path from a vertex inK1 to a
vertex inK2 in G has to pass through an ancestor ofK1, andK2. Thus, there is not edge betweenK1 and
K2 in G, a contradiction.
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C Approximation Algorithm for Embedding General Metrics – O mitted
Proofs

C.1 Proof of Lemma 6

Claim 6. For any Ai, Aj ∈ AG, with Ai 6= Aj , either Ti∩Tj = ∅, or there exists v ∈ V (T ), and v1, . . . , vl,
for some l ≥ 0, such that v1, . . . , vl are children of v, and Ti ∩ Tj = {v, v1, . . . , vl}.

Proof. It follows immediately from the fact that for anyAi, Aj ∈ AG, the diameter ofTG,Ai

K ∩ T
G,Aj

K is at
most50c2.

Let r be the root ofT . Initially, T ′ contains a single vertexr′. To simplify the discussion, we assume
w.l.o.g., thatr is a leaf vertex ofT . We also assume that for every edge{u, v} ∈ E(T ), there is a treeTi

that contains{u, v}. This is because if there is no such tree, then we can simply introduce a new subtreeTi,
that contains only the verticesu, andv.

For everyTi that visitsr, we introduce inT ′ a copyφi(Ti) of Ti, and we connectφi(r) to r′.
We proceed by visiting the vertices ofT in a top-down fashion. Assume that we are visiting a vertex

v ∈ V (T ), with parentp(v), and childrenv1, . . . , vt. At this step, we are going to introduce inT ′ a copy
φi(Ti) of Ti, for everyTi that visitsv, and we have not considered yet. We consider the following cases:

Case 1: There is no Ti that visits v, and p(v).

Let Ta be a subtree that visitsp(v). For everyTb that visitsv, and we have not considered yet, we
introduce inT ′ a copyφb(Tb) of Tb, and we connectφb(v) to φa(p(v)).

Case 2: There exists Ti that visits v, and p(p(v)), and there is no j 6= i, such that Tj visits v, and p(v).

For everyTb that visitsv, and we have not considered yet, we introduce inT ′ a copyφb(Tb) of Tb,
and we connectφb(v) to φi(v).

Case 3: There is no Ti that visits v, and p(p(v)), and there exists Tj that visits v, and p(v).

Let a ∈ [k] be the minimum integer such thatTa visits v, andp(v). For everyTb that visitsv, and we
have not considered yet, we introduce inT ′ a copyφb(Tb) of Tb, and we connectφb(v) to φa(v).

Case 4: There exists Ti that visits v, and p(p(v)), and there exists Tj , with i 6= j, that visits v, and p(v).

Let a ∈ [k] be the minimum integer witha 6= i, such thatTa visits v, andp(v). For everyTb that
visits v, and we have not considered yet, we introduce inT ′ a copyφb(Tb) of Tb. With probability
1/2, we connectφb(v) to φi(v), and with probability1/2, we connectφb(v) to φa(v).

Claim 7. T ′ is a tree.

Proof. T ′ is a forest since eachφi(Ti) is a tree, and also eachφi(Ti) is connected to exactly oneφj(Tj),
such thatTj was considered beforei. Also, T ′ is connected since every vertex ofT is contained in some
subtreeTt.

Claim 8. For any v ∈ V (T ), there exists at most one i ∈ [k], such that Ti visits both v, and p(p(v)).

Proof. Assume that the assertion is not true. LetTi, Tj be subtrees that visit bothv, andp(p(v)). Then,Ti

andTj also visitp(v). This however contradicts the definition of the subtreesT1, . . . , Tk.
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Claim 9. Let i, j ∈ [k], with i 6= j, be such that Ti, and Tj both visit a vertex v ∈ V (T ), but they do not
visit p(v). Then, with probability at least 1/2, there exists t ∈ [k], such that Tt visits v, and p(v), and both
φi(v), and φj(v) are connected to φt(v).

Proof. Recall the procedure for constructingT ′, described above. Consider the step in which we add toT ′

the subtrees that visit the vertexv, andv is their highest vertex inT . ClearlyTi, andTj are both in this set
of subtrees. Observe that in cases 1, 2, and 3, the first event of the assertion happens with probability1. This
is because all the trees that we consider are connected to thesame subtree.

In the remaining case 4, there are subtreesTi′ , Tj′ such that each subtree that we consider is going to be
connected toTi′ with probability 1/2, and toTj′ with probability 1/2. Thus, with probability1/2, Ti and
Tj are going to be connected to the same subtree.

Claim 10. Let i, j ∈ [k], with i 6= j, be such that Ti visits v, and does not visit p(v), and Tj visits both v,
and p(v), for some v ∈ V (T ). Then, with probability at least 1/4, there exists L ≤ 4, and t(1), . . . , t(L),
such that

• t(1) = i, and t(L) = j,

• for each l ∈ [L − 1], φt(l)(Tt(l)) is connected to φt(l+1)(Tt(l+1)).

Proof. We have to consider the following cases:

Case 1:Tj visits p(p(v)).

In this case,φi(v) is connected toφj(v) with probability at least1/2.

Case 2:Tj does not visitp(p(v)).

Let w be the smallest integer, such thatTw visits v, andp(v), but does not visitp(p(v)). If w = j,
thenφi(v) is connected toφj(v) with probability at least1/2.

Otherwise, ifw 6= j, then with probability at least1/2, φi(v) is connected toφw(v). Moreover, by
Claim 9, with probability at least1/2, there existsw′ ∈ [k], such that bothφw(p(v)), andφj(p(v)),
are connected toφw′(p(v)). Observe that the above two events are independent. Thus, with with
probability at least1/4, the sequence of subtreesTi, Tw, Tw′ , Tj , satisfy the conditions of the assertion.

Claim 11. Let Ti, Tj be two subtrees such that they both visit some vertex v ∈ V (T ). Then, with probability
at least 1 − n−4, there exists L = O(log n), such that for any Ti, Tj , there exists a sequence of subtrees
Tt(1), . . . , Tt(L), with

• t(1) = i, and t(L) = j, and

• for any l ∈ [L − 1], φt(l)(Tt(l)) is connected to φt(l+1)(Tt(l+1)).

Proof. By the previous claim, we know that with constant probability there exists a path of length at most
3 betweenφi(Ti) andφj(Tj) in T ′. If this happens, then we have a small path betweenφi(Ti) andφj(Tj).
Otherwise, we look at the treesφi′(Ti′) andφj′(Tj′) which are connected toφi(Ti) andφj(Tj) towards the
root, and they visit the vertexp(p(v)). Note that with constant probability (by the previous claimagain)
there exists a path of length at most4 betweenφi′(Ti′) andφj′(Tj′). By continuing this argument towards
the root6 log n times, it follows that with probability1 − n−6 there exists a path of length at most20 log n.
By an union bound argument it follows that with probability1 − n−4 everyφi(Ti) andφj(Tj) which have
a vertex in common are connected by a path of length at most20 log n in T ′.
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Claim 12. Let Ti, Tj be two subtrees such that they both visit some vertex v ∈ V (T ). Then, with probability
at least 1 − n−4, for any vi ∈ V (Ti), and for any vj ∈ V (Tj), DT (vi, vj) ≤ DT ′(φi(vi), φj(vj)) ≤
(DT (vi, vj) + 1)O(log n).

Proof. Observe that since the diameter of the intersection of the two subtrees is at most 2, in order to
approximate the distance betweenφi(vi) andφj(vj) for all vi, vj , it suffices to approximate the distance
betweenφi(v) andφj(v). By the previous claim, it easily follows that there a path oflength20 log n that
connectsφi(v) to φj(v).

In order to finish the proof, it suffices to consider pairsTi, Tj that do not intersect. LetTi, Tj be such a
pair of subtrees, and letxi, xj be the closest pair of vertices betweenTi, andTj . Let p be the path between
xi to xj in T . Assume thatp visits the subtreesTi, Tt(1), . . . , Tt(l), Tj . We further assume w.l.o.g., that for
eachTt(s), p visits at least one edge fromTt(s), that does not belong to any otherTt(s′), with s 6= s′. Assume
that for eachs ∈ [l], p entersTt(s) in a vertexys, and leavesTt(s) at a vertexzs. We have

DT ′(φi(xi), φj(xj)) = DT ′(φi(xi), φt(1)(y1)) +
l
∑

s=1

DT ′(φt(s)(ys), φt(s)(zs)) +

l−1
∑

s=1

DT ′(φt(s)(zs), φt(s+1)(ys+1)) + DT ′(φt(l)(zl), φj(xj))

≤ O(l · log n) +

l
∑

s=1

DT (ys, zs)

= O(DT (xi, yi) log n)

Similarly to the proof of the above claim, we observe that since the intersection of any two trees is short,
and we approximate the distance between the closest pair ofTi, andTj , it follows that we also approximate
the distance between any pair of vertices odTi, andTj.

C.2 Proof of Lemma 7

The next claim is similar to a lemma given in [BCIS05], modified for the case of embedding into trees.

Claim 13. Let α > 0. Let G be an α-restricted subgraph of M , and let G′ be an αc-restricted subgraph of
M , with V (G) = V (G′). If G is connected, then for any u, v ∈ V (G), D(u, v) ≤ DG′(u, v) ≤ cD(u, v).

Proof. Let M ′ be the restriction ofM onV (G). Consider a non-contracting embedding ofM ′ into a treeT ′

with distortion at mostc. Consider an edge{u, v} ∈ E(T ′). We will first show thatD(u, v) ≤ αc. LetS be
a minimum spanning tree ofG. If {u, v} ∈ E(S), then sinceG is connected, it follows thatD(u, v) ≤ α.
Assume now that{u, v} /∈ E(S). Let Tu andTv be the two subtrees ofT ′, obtained after removing the
edge{u, v}, and assume thatTu containsu, andTv containsv. Let p = x1, . . . , x|p| be the unique path in
S with u = x1, andv = x|p|. Observe that the sequence of vertices visited byp start from a vertex inTv,
and terminate at a vertex inTu. Thus, there existsi ∈ [|p| − 1], such thatvi ∈ Tv, while vi+1 ∈ Tu. It
follows that the edge{u, v} lies in the path fromvi to vi+1 in T ′, and thusDT ′(u, v) ≤ DT ′(vi, vi+1). Since
{vi, vi+1} is an edge ofS, we have by the above argument thatD(vi, vi+1) ≤ α. Since the embedding inT
has expansion at mostc, it follows thatDT ′(vi, vi+1) ≤ αc. Thus,DT ′(u, v) ≤ αc.
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Consider now some pairx, y ∈ V (G). If no vertex is embedded betweenx and y, then by the
above argument,D(x, y) ≤ αc, and thus the edge{x, y} is in G′ and DG′(x, y) = D(x, y). Oth-
erwise, letz1, . . . , zk be the vertices appearing inT ′ betweenx and y (in this order). Then the edges
{x, z1}, {z1, z2}, . . . , {zk−1, zk}, {zk, y} all belong toG′, and therefore

DG′(x, y) ≤ DG′(x, z1) + DG′(z1, z2) + . . . DG′(zk−1, zk) + DG′(zk, y)

= D(x, z1) + D(z1, z2) + . . . D(zk−1, zk) + D(zk, y)

≤ DT ′(x, z1) + DT ′(z1, z2) + . . . + DT ′(zk−1, zk) + DT ′(zk, y)

= DT ′(x, y) ≤ cD(x, y)

By the construction of the setAG, it follows that aWG/c2-restricted subgraph with vertex setA, is
connected. Thus, by claim 13,DGA

c-approximatesD.

C.3 Proof of Lemma 8

In order to bound the contraction ofS, it is sufficient to bound the contraction between pairs of vertices
x1, x2 ∈ V (G), such that either{x1, x2} ∈ S, or betweenx1 andx2 there are only steiner nodes inS.

We will prove the assertion by induction on the recursive steps of the algorithm. Consider an execution
of the recursive procedure RECURSIVETREE, with input a graphG with maximum edge weightWG. If G
contains only one vertex, then assertion is trivially true.Otherwise, assume that all the recursively computed
treesSA satisfy the assertion.

Consider such a pairx1, x2 ∈ V (G), and assume that in the path fromx1 to x2 in S, there arek ≥ 0
steiner nodes. If there existsA ∈ AG, such thatx1, x2 ∈ A, then the assertion follows by the inductive
hypothesis.

Assume now that there existA1, A2 ∈ AG, with A1 6= A2, such thatx1 ∈ A1, andx2 ∈ A2. It follows
thatDS(x1, x2) = (k + 1)WG/(c3α). PickC1, C2 ∈ V (T ), andK1,K2 ∈ KG, such thatx1 ∈ K1 ∈ C1,
andx2 ∈ K2 ∈ C2. We haveDT ′(φ1(C1), φ2(C2)) = k+1. By Lemma 6, we obtainDT (C1, C2) ≤ k+1.
Thus,DT G

K

(K1,K2) ≤ (k + 2)50c2. By Lemma 3,D(x1, x2) ≤ ((k + 2)50c2 + 2)WGc2. Thus, the

contraction onx1, x2 is DS(x1,x2)
D(x1,x2)

≤ ((k+2)50c2+2)WGc2

(k+1)WG/(c3α)
< 104c7α.

C.4 Proof of Lemma 9

We will prove the assertion by induction on the recursive steps of the algorithm.
Consider an execution of the recursive procedure RECURSIVETREE, with input a graphG with maxi-

mum edge weightWG. If G contains only one vertex, then the expansion of the computedtree is at most 1.
Otherwise, at Step 2 we partitionV (G) into AG, and at Step 3, for eachA ∈ AG we define the graphGA,
and recursively execute RECURSIVETREE on GA, obtaining an embedding ofGA into a treeSA. Assume
that for eachA ∈ AG, the expansion onSA is at mostξ.

Considerx, y ∈ V (G). Assume thatx ∈ Aix , andy ∈ Aiy , for someAix , Aiy ∈ AG. If Aix = Aiy ,
then the expansion is at mostξ, be the inductive hypothesis. We can thus assume thatAix 6= Aiy . Pick
Kx,Ky ∈ KG, andCx, Cy ∈ V (T ), such thatx ∈ Kx ∈ Cx, andy ∈ Ky ∈ Cy. Let p be the path between
φix(Cx), andφiy(Cy) in T ′.

Let alsoq be the path fromx to y in S. Assume thatq visits the sets inAG in the orderAt1 , At2 , . . . , Atk .
Let vi, andv′i be the first and the last respectively vertex ofAti visited byq Similarly, letφji(Ci), φji(C

′
i)
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and be the first, and the last respectively vertex ofφji(Tji) visited byp. For eachj ∈ [k], pickKi,K
′
i ∈ KG,

such thatvi ∈ Ki, andv′i ∈ K ′
i.

Let δ = WG/(c3α). We have:

DS(x, y) =
k
∑

j=1

DS(vj , v
′
j) +

k−1
∑

j=1

DS(vj′ , vj+1)

≤ ξ
k
∑

j=1

D(vj , v
′
j) + δ

k−1
∑

j=1

DT ′(φji(C
′
i), φji+1(Ci+1))

≤ ξWGc2
k
∑

j=1

(2 + DT G
K

(Kj ,K
′
j)) + 20δ log n

k−1
∑

j=1

(1 + DT (C ′
i, Ci+1))

≤ ξWGc2
k
∑

j=1

(2 + 100c2DT (Cj , C
′
j)) + 20δ log n

k−1
∑

j=1

(1 + DT (C ′
i, Ci+1))

≤ (102ξWGc4 + 40δ log n)DT (Cx, Cy)

≤ (102ξWGc4 + 40δ log n)DT G
K

(Kx,Ky)

≤ (102ξWGc4 +
40WG log n

c3α
)(

D(x, y)

WGc
+ 2)

SinceAix 6= Aiy , it follows thatD(x, y) ≥ δ = WG/(c3α). Thus,

DS(x, y) ≤ (102ξWGc4 +
40WG log n

c3α
)(

D(x, y)

WGc
+ 2c3α

D(x, y)

WG
)

≤ (102ξc4 +
40 log n

c3α
)3c3αD(x, y)

≤ (306ξc7α + 120 log n)D(x, y)

Given a graph of maximum edge weightWG, the procedure RECURSIVETREE might perform recursive
calls on graphs with maximum edge weightc3δ = WG/α. Since the minimum distance inM is 1, and the
spread ofM is ∆, it follows that the maximum number of recursive calls can beat mostlog ∆/ log α. Thus,

DS(x, y) ≤ (cO(1) log n)logα ∆D(x, y)
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