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Abstract

We consider the problem of embedding general metrics imt@str We give the first non-trivial ap-
proximation algorithm for minimizing the multiplicativagtortion. Our algorithm produces an embed-
ding with distortion(c log n)O(m% wherec is the optimal distortion, and is the spread of the metric
(i.e. the ratio of the diameter over the minimum distanceg gie an improved(1)-approximation
algorithm for the case where the input is the shortest pathier@ver an unweighted graph.

We also provide almost tight bounds for the relation betwestbedding into trees and embed-
ding into spanning subtrees. We show that for any unweigbtaphG, the ratio of the distortion
required to embed- into a spanning subtree, over the distortion of an optinesd tmbedding of, is
at mostO(logn). We complement this bound by exhibiting a family of graphsvitnich the ratio is
Q(logn/loglogn).
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1 Introduction

A low-distortion embedding between two metric spadésand M’ with distance functiond) and D’ is

a (non-contractive) mapping such that for any pair of pointg, ¢ in the original metric, their distance
D(p, q) before the mapping is the same as the distabtg (p), f(¢)) after the mapping, up to a (small)
multiplicative factorc. Low-distortion embeddings have been a subject of extensigthematical studies,
and found numerous applications in computer science (@fOR, Ind01]).

More recently, a few papers (cf. Figure 1) addressedr#tegive or approximation version of this
problem. In this setting, the question is: for a class of etr', and a host metrid/’, what is thesmallest
approximation factor « > 1 of an efficient algorithm minimizing the distortion of embedding of a given
input metricM € C into M’ ? This formulation enables the algorithm to adapt to a gimguii metric. In
particular, if the host metric is "expressive enough” towately model the input distances, the minimum
achievable distortion is low, and the algorithm will proéuen embedding with low distortion as well.

This problem has been a subject of extensive applied rdsdaring the last few decades (e.g., see [MDS]
web page, or [KTT98]). However, almost all known algorithfosthis problem are heuristic. As such, they
can get stuck in local minima, and do not provide any globargntees on solution quality ([KTT98],
section 2).

In this paper we consider the problem of approximating mimimdistortion for embedding general
metrics intotree metrics, i.e., shortest path metric over (weighted) trees. Thisiataral problem with con-
nections and applications to many areas. The classic agiplicis the recovery of evolutionary trees from
evolutionary distances between the data (e.g., see [S@OHDEKMI8], section 7.3). Another motivation
comes from computational geometry. Specifically, Eppstigpp00], Open Problem 4) posed a question
about algorithmic complexity of finding thainimum-dilation spanning tree of a given set of points in the
plane. This problem is equivalent (up to a constant factahénapproximation factor) to a special case of
our problem, where the input metric is induced by points im plane. Moreover, a closely related prob-
lem has been studied in the context of graph spanners [PUBZ8]P Namely, the problem of computing
a minimum-stretch spanning tree of a graph can be phrased as the problem of computing the minim
distortion embedding of a graph into a spanning subtree.

1.1 Ourresults

Our main results are the first non-trivial approximationoaitipms for embedding into tree metrics, for mini-
mizing the multiplicative distortion. Specifically, if theput metric is an unweighted graph, we givel )-
approximation algorithm for this problem. For general restrwe give an algorithm such that if the input
metric isc-embeddable into some tree metric, produces an embeddthglistortiona(clog n)O(IOga A),
for anya > 1. In particular, by settingr = 282 we obtain distortior(clog n)°(VIs2)  Alternatively,
whenA = n©(), by settinga = n¢, we obtain distortiom<(clog n)°(1/<). This in turn yields arO(n'~9)-
approximation for som@ > 0, since it is always possible to construct an embedding wétodion O(n)

in polynomial time [Mat90].

Further, we show that by composing our approximation allgorifor embedding general metrics into
trees, with the approximation algorithm of [BCIS05] for emdlling trees into the line, we obtain an
improved? approximation algorithm for embedding general metrice itite line. The best known dis-
tortion guarantee for this problem [BCIS05] wed() A3/4, while the composition results in distortion

1That is, with running time polynomial in, wheren is the number of points of the metric space.
%Strictly speaking, the guarantees are incomparable, bulépendence oA in our algorithm is a great improvement over the
earlier bound.



Paper From Into Distortion Comments
[LLR94] general metrics Lo c uses SDP
[KRS04] line line c c is constant, embedding is a bijection
unweighted graphs bounded degree tree c c is constant, embedding is a bijection
[PS05] R? 3 > (3—¢€)c hard to3-approximate, embedding is a bijection|
[HPO5] line line > pfM ¢ = nM | embedding is a bijection
[EPO4] unweighted graphs sub-trees O(clogn)
[PTO1] outerplanar graphs sub-trees c
[CC95] unweighted graphs sub-trees NP-complete
[FKO1] planar graphs sub-trees NP-complete
[BDGT05] | unweighted graphs line o(c*) implies/n-approximation
> ac hard toa-approximate for some > 1
c cis constant
unweighted trees line 0(c**\/log ¢)
subsets of a spherg plane 3c
[BCIS06] ultrametrics R P
[ABD *05] general metrics ultrametrics c
[BCIS05] general metrics line O(A%/2t/Y)
weighted trees line W
weighted trees line Q(n/12¢) hard toO(n'/'?)-approximate even faf = n°™"
[LNPOE6] weighted trees L, O(c)

Figure 1:Previous work on relative embedding problems for multigtiice distortion. We use to denote the optimal distortion,
andn to denote the number of points in in the input metric. Noté tha table contains only the results that hold fortinétiplica-
tive definition of the distortion; there is a rich body of work ttzgiplies to other definitions of distortion, notably thdgitive or

average distortion, see [BCIS05] for an overview.

(clogn)?(V1ed) n fact, we provide a general framework for composing fede¢mbeddings which could
be useful elsewhere.
For the special case where the input is an unweighted grapficmee also study the relation between
embedding into trees, and embedding into spanning subtrdasO (log n)-approximation algorithm is
known [EPO4] for this problem. We show that if an unweightedpip metric embeds into a tree with
distortion ¢, then it also embeds into a spanning subtree with distoidnlogn). We also exhibit an
infinite family of graphs that almost achieves this bounda;hegraph in the family embeds into a tree with
distortion O(log n), while any embedding into a spanning subtree has distoftigog? 1/ log logn). We
remark that by composing the upper bound with @t )-approximation algorithm for unweighted graphs,
we recover the result of [EP04]. Due to lack of space, we dbferesults on the relation between embedding
into trees, and embedding into spanning subtrees, to thesiidion of this paper.

1.2 Related Work

The study of the problem of approximating metrics by treerivghas been initiated in [FCKW93, ABF®6],
where the authors give a&n(1)-approximation algorithm for embedding metrics into tregtmes. They also
provide exact algorithms for embeddings into simpler nasfrcalledultrametrics. However, instead of the
multiplicative distortion (defined as above), their algorithms optimize dtiditive distortion; that is, the
quantitymax, , | D(p, ¢) — D'(p, ¢)|. The same problem has recently been studied also for theotasie-

imizing the L,, norm of the differences [HKMO05, AC05]. In a recent paper [AJ(a (log n log log n)l/f”—

approximation has been obtained for this problem.



Minimizing the multiplicative distortion seems to be a hargroblem in general. For example, embed-
ding into the line is hard ta‘*()-approximate for multiplicative distortion, and there i known polyc)-
approximation algorithm, while for additive distortionetfe exists a simpl&-approximation.

The problem of embedding into a tree with minimum multipiiea distortion is closely related to the
problem of computing a minimum-stretch spanning tree. Wwegroblems are identical for the case of com-
plete graphs. We mention the work of [PU87, CC95, VRM, PR98, PT01, FK01, EP04]. For unweighted
graphs, the best known approximation is@flog n)-approximation algorithm [EP04]. Our algorithm for
unweighted graphs can be combined with our algorithm foveding an embedding into a tree into an
embedding into a spanning subtree, to give the same appatigimguarantee (within constant factors).

The problem of approximating thaultiplicative distortion of embeddings intaltrametrics has been
studied as well; there is a polynomial-time algorithm folvawy this problem exactly [ABD05]. Ultra-
metrics are useful for modeling evolutionary data, but theynot as expressive as general tree metrics. In
particular, they form a proper subset of tree metrics. S&KI98] for a more detailed discussion.

1.3 Notation and Definitions

Graphs For a graphG = (V,G), andU C V(G), let G[U] denote the subgraph 6f induced byU. For
u,v € V(Q) let Dg(u,v) denote the shortest-path distance betweamdv in G. We assume that all the
edges ofG have weight at least 1. (& is weighted letV denote the maximum edge weight@f and let
Wea = 1 otherwise.

Metrics For any finite metric spac&/ = (X, D), we assume that the minimum distancelinis at least

1. M is called aree metric iff it is the shortest-path metric of a subset of the verticka weighted tree. For
agraphG = (V, E), andy > 1 we say thatz v-approximates\/ if V(G) C X, and for each,v € V(G),
D(u,v) < Dg(u,v) < vD(u,v). We say thatV/ c-embeds into a tree if there exists an embedding of
M into a tree with distortion at mogt When considering an embedding into a tree, we assume unless
stateted otherwise that the tree might contain steinersidig a result of Gupta [Gup01], after computing
the embedding we can remove the steiner nodes losing at nagdt)dactor in the distortion (and thus also

in the approximation factor).

a-Restricted Subgraphs For a weighted graptiy = (V, E), and fora > 0, the a-restricted subgraph of
G is defined as the graph obtained frarmafter removing all the edges of weight greater tharSimilarly,
for ametricM = (X, D), thea-restricted subgraph d¥/ is defined as the weighted graph on vertex’set
where an edgéu, v} appears irG iff D(u,v) < «, and the weight of every edde:, v} is equal toD (u, v).

2 A Forbidden-Structure Characterization of Tree-Embeddability

Before we describe our algorithms, we give a combinatohalacterization of graphs that embed into trees
with small distortion. For any > 1, the characterization defines a forbidden structure thatatzappear in

a graph that embeds into a tree with distortion at naosthis structure will be later used when analyzing
our algorithms to show that the computed embedding is clmsetimal.

Lemma 1. Let G = (V, E) be a (possibly weighted) graph. If there exist nodes v, v1, v, v3 € V(G), and
A > 0, such that

e for eachi: 0 <i < 4, there exists a path p;, with endpoints v;, and v; 11 moq 4, and
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e foreachi: 0 <i <4, Dg(pi,pi_,_g mod 4) > AMWa,
then, any embedding of G into a tree has distortion greater than ).

Proof. Let W = W¢. Consider an optimal non-contracting embeddjhgf G, into a treeT. For any
u,v € V(G), let P, ,, denote the path fronf(u) to f(v), in T'. For eachi, with 0 < i < 4, defineT; as
the minimum subtree df’, which contains all the images of the nodegof Since eaclt; is minimum, it
follows that all the leaves df; are nodes of (p;).

Claim 1. For eachi, with 0 < i < 4, wehave T; = Uy, ,1e p(py) Puso-

Proof. Assume that the assertion is not true. That is, there existsV (7;), such that for any{u, v} €

E(p;), the pathP, ,, does not visitz. Clearly,z ¢ V(p;), and thusz is not a leaf. Letl}!, T2,...,T/, be
the connected components obtained by removifigm 7;. Since for everf{u, v} € E(p;), P, ., does not
visit z, it follows that there is no edgéu, v} € E(p;), withu € T2, v € TP, anda # b. This however,

implies thatp; is not connected, a contradiction. O O
Claim 2. For each i, with0 < i < 4,wehave T; N Tj1 2 mod 4 = 0.

Proof. Assume that the assertion does not hold. That is, theresexisiith 0 < 7 < 4, such thatZ; N
Ti12 mod 4 # 0. We have to consider the following two cases:

Case 1: T; N T;12 mod 4 contains a node from V(p;) U V(pi+2 mod 4)- W.L0.g., we assume that
there existsv € V(pi+2 mod 4), SUch thatw € T; N T4 moq 4. By Claim 1, it follows that there ex-
ists {u,v} € E(p;), such thatf(w) lies on P, ,. This impliesDz(f(u), f(v)) = Dr(f(u), f(w)) +
Dr(f(w), f(v)). On the other hand, we haveg; (p;, pir2 mod 4) > AW, and sincef is non-contracting,
we obtainDr(f(u), f(v)) > 2AW. Thus,c > Dr(f(u), f(v))/Dg(u,v). Since{u,v} € E(G), and the
maximum edge weight ifr is at mostiV, we haveDg(u, v) < W, and thus: > 2.

Case 2:T;NTj12 mod 4 doesnot contain nodes from V (p; ) UV (pi+2 mod 4)- Letw € T;NT;49 mod 4-
By Claim 1, there exis{ui,v1} € E(p;), and{uz,v2} € E(pi+2 mod 4), Such thatw lies in bothP,, ,,,,
and Py,.,v,. We haveDr(f(u1), f(v1)) + Dr(f(u2), f(v2)) = Dr(f(u1), f(w)) + Dr(f(w), f(v1)) +
Dr(f(uz), f(w))+Dr(f(w), f(v2)) = Dr(f(u1), f(u2))+Dr(f(v1), f(v2)) = Da(ur, u2)+Da(vi,v2) >
2D¢ (i, Pit2 mod4) > 2AW. Thus, we can assume thaéty(f(u1), f(v1)) > AW. It follows that
c> PrfElpl > : =

Moreover, since;, andp; 11 mod 4, Share an end-point, we ha¥©N T} 1 moq 4 # (. By Claim 2, it
follows, thath’:O T; C T, contains a cycle, a contradiction. O O

3 Tree-Like Decompositions

In this section we describe a graph partitioning proceduriekvis a basic step in our algorithms. Intuitively,
the procedure partitions a graph into a set of clusters, aadges the clusters in a tree, so that the structure
of the tree of clusters resembles the structure of the @igjraph.

Formally, the procedure takes as input a (possibly weighgeaphG = (V, E), a vertexr € V(G), and
a parameteA > 1. The output of the procedure is a paw,g, K¢), whereK; is a partition ofV/(G), and
TS is a rooted tree with vertex skl .

The partitionCq of V(G) is defined as follows. For integérlet

Vi = {veV(G)Wag(i — 1A < Dg(r,v) < Wgil}.
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Figure 2: An example of a tree-like decomposition of a graph.

Initially, K¢ is empty. Lett be the maximum index such th&} is non-empty. Lefy; = Uz.:i Vj. For
eachi € [t], and for each connected componéhof G[Y;] that intersectd/;, we add the sef NV, to the
partition ;. Observe that some clusterskiiz; might induce disconnected subgraphg:in

TE can now be defined as follows. For eakhK’ € K¢, we add the edgéK, K’} in TE iff there is
an edge inG between a vertex ik and a vertex ink’. The root ofT,g is the cluster containing. The
resulting pair(7¢, K¢) is called a(r, A)-tree-like decomposition of G.

Figure 2 depicts the described decomposition.

Proposition 1. T isatree.

Proof. Letu,v € V(G). SinceG is connected, there is a patfromu tov in G. Letp = x,... s Ty

Foreach € {1,...,|p|}, let K; € K be such that; € K. Itis easy to verify that the sequen{:Ki}Lp:‘1
contains a sub-sequence that corresponds to a pdifi.iThus,7¢ is connected.

It is easy to show by induction onthat fori = ¢,...,1, the subsetl,; C K¢ that is obtained by
partitioning(J;_; V;, induce a forest ifi¢. SinceL; = K¢, andT}¢ is connected, it follows thaf is a
tree. O O

3.1 Properties of Tree-Like Decompositions

Before using the tree-like decompositions in our algorghmve will show that for a certain range of the
decomposition parameters, they exhibit some usefull pti@se

We will first bound the diameter of the clustersiiz;. The intuition behind the proof is as follows. If
a clusterK is long enough, then starting from a pair of verticexiy € K that are far from each other,
and tracing the shortest paths frarmandy to r, we can discover the forbidden structure of lemma &in
Applying lemma 1 we obtain a lower bound on the optimal distor, contradicting the fact that embeds
into a tree with small distortion.

Lemma 2. Let G = (V, E) be a graph that v-embeds into a tree, let r € V(G), and let (¢, K¢) be a
(r,~y)-tree-like decomposition of G. Then, for any K € K, and for any u,v € K, Dg(u,v) < 207yWe.

Proof. Assume that the assertion is not true, and gick K, and vertices:,y € K, such thaDg(z,y) >
20vWeq. Recall thatC; was obtained by partitioning the vertices@faccording to their distance from
Letg,, andg, be the shortest paths franto r, and fromy to r respectively. Lef<, ..., K be the branchin
T,g, suchthat € K, andK, = K. By the construction ok, we have that forany < [7], foranyz € K;,
Dq(r,z) < iWgy. Thus,Dg(z,y) < Dg(z,7) + Dg(r,y) < 2rWge. SinceDg(z,y) > 207Wg, it
follows thatr > 10.

Consider now the sub-paflt of ¢, that starts fromz, and terminates to the first vertex of K. _»
visited byg,.. Define similarlyp? as the sub-path @f, that starts frony, and terminates to the first vertgk



of K. _» visited byg,. We will first show thatD¢ (p”, p¥) > vW¢. Observe that by the construction/6¢;,
we have thaDg (z, ') < 29W¢, and alsdD¢ (y,y') < 2yWe. Sincep”, andp? are shortest paths, we have
that for anyz € p®, Dg(z,z) < 29W¢, and similarly for any: € p¥, Dg(y, z) < 29Wq. Pickz € p®,
andz’ € p¥, such thatD¢(z, 2’) is minimized. We havé¢(z,y) < Dg(x, z) + Dg(z,2") + Da(2',y) <
Dq(z,2") + 49Weq. Thus,Dg (p*, p¥) = Dg(z,2') > Dg(x,y) — 49Wa > 20yWe — 49yWe = 167Wg.
Let now p*’ be the remaining sub-path gf, starting fromz’, and terminating to-, and definep?’
similarly. Letp®™ be the path fromx’ to ¢/, obtained by concatenating’, andp?’.
By the construction of ¢ it follows that if we remove fronts all the vertices in the seis, K3, ..., K, 1,
thenz andy remain in the same connected component. In other words, weick a pathp¥* from z to
y, that does not visit any of the verticesLijj;l1 K;. It follows that the distance between any vertex¥f,

and any vertex irU]T;f K, is greater thanW¢. Thus,Dq (p™, p¥*) > yWe.
We have thus shown that there are vertices, v/, 2’ € V(G), and pathg®, p¥, p™¥, p¥*, satisfying the
conditions of Lemma 1. It follows that the optimal distorticequired to embed’ into a tree is greater than

~, a contradiction. O O

Using the bound on the diameter of the clustersCin, we can show that for certain values of the
parameters, the distances in the tree of clusters apprtitina distances in the original graph.

Lemma 3. Let G = (V, E) be a graph that v-embeds into a tree, let r € V(G), and let (T, K¢) be
a (r,v)-tree-like decomposition of G. Then, for any K1, Ky, € Kg, and for any =1 € Kj, o € Ko,
(Dyg (K1, K2) = 2)Weay < Da(1,22) < (Dpg (K1, Ka) 4 2)20Way.

Proof. Leté = DTg(KL K5). We begin by showing the first inequality. We have to consillerfollowing
cases:

Case 1: Ky and K> are on the same path from the root to a leaf of T,g . Let the path betweef’; and
Ky in TE be Ky, Hy, Ha, ..., Hs_1, K. Assume that the assertion is not true. Thatlg;(z1,z2) <
(0 — 2)Wgy. Thus,Dg(r,z2) < Dg(r,z1) + Dg(z1,22) < Dg(r,xz1) + (0 — 1)Wg~y. Assume that
r € K,, for somekK, € K¢, and w.l.0.g. that(; is an ancestor oK in T,g. Let the distance betweds,
and K in T¢ bek. Then, the distance betweds). and K> is at mosts’ = k + Dg(z1,22)/(Wey). This
implies thatd = ¥’ — k < § — 1, a contradiction.

Case 2: K; and K are not on the same path from the root to a leaf of T,g . Let K, be the nearest
common ancestor ak; and K5 in T,Q. Observe that any path fromto y in G passes througl,. Thus,
we haveDq(x,y) > Dg(K,, K,) + Da(K,, K,). Letd;, fori € {1,2} be the distance betweéki, and
K;in T,g. Then, by an argument similar to the above, we obtain atx,, K,) > (6 — 1)Wgy, and
also Dg(Ky, Kq) > (02 — 1)Wgy. SinceK, is the nearest common ansestorfof and K, it follows
that K, reparateds; from K, in G. Thus,D¢(z,y) > Dg(K,, Ky) > Dg(Ky, K,) + Da(Ky, Kq) >
(6 —2)Wge.

We now show the second inequality. Consider an edgeK’} of T,Q. SinceK and K’ are connected
in T} it follows that there exists an edgedbetween a vertex i and a vertex ink”’. Since the maximum
edge weight of7 is W, we obtainDg (K, K') < Wq.

Since by Lemma 2, the diameter of eakhe K is at most20W, it follows that Dg(z1, x2) <
IWe + (6 4+ 1)20Wey < (6 4+ 2)20Wgn. O O



4 Approximation Algorithm for Embedding Unweighted Graphs

In this section we give &(1)-approximation algorithm for the problem of embedding thersest path
metric of an unweighted graph into a tree. Informally, thgoathm works as follows. Le&G = (V, E)
be an unweighted graph, such tléatan be embedded into an unweighted tree with distortioft a first
step, we compute a tree-like decomposit(d?,ﬁ, K¢) of G. For each cluster il we embed the vertices
of the cluster in a star. We then connect the starts to forree@dembedding of7 by connecting stars that
correspond to clusters that are adjancerif,%

Formally, the algorithm can be described with the followstgps.

Step 1. We pick € V(G), and we compute @, c)-tree-like decompositioi7 )¢, K;) of G.

Step 2. We construct a trééas follows. Lety = {K3,..., K,;}. For eachi € [t], we construct a star
with center a new vertey;, and leaves the vertices id;. Next, for each edg¢K;, K} in TG, we
add an edggp;, p;} inT.

By proposition 1, we know that the resulting graphs indeed a tree, so we can focus of bounding the
distortion of . By lemma 2, the diameter of each clusterkig is at most20cWg = 20c. Letzy,zo €
V(G), with ;1 € K, andzy € Ko, for someK;, Ky € Kg. We haveDr(z1,22) = 2 + Dr(p1,p2) =
2+ DT,g(Kh K>). By lemma 3 we obtain thaDr(x1,z2) < 4+ Dg(x1,22)/c < 5Dg(z1,22). Also by
the same lemma)r(x1,22) > Dg(x1,22)/(20c). By combining the above it follows that the distortion is
at most100c.

Theorem 1. There exists a polynomial time, constant-factor approximation algorithm, for the problem of
embedding an unweighted graph into a tree, with minimum multiplicative distortion.

5 Well-Separated Tree-Like Decompositions

Before we describe our algorithm for embeddings generaliosetve need to introduce a refined decompo-
sition procedure. As in the unweighted case, we want to olatggartition of the input metric space in a set
of clusters, solve the problem independetly for each diuated join the solutions to obtain a solution for
the input metric.

The key properties of the tree-like decomposition used éndhase of unweighted graphs are the fol-
lowing: (1) the distances in the tree of clusters approxantaé distances in the original graph, and (2) the
diameter of each cluster is small.

Observe that if the graph is weighted with maximum edge weigh, and the clusters have small
diameter, then the distance between two adjacent clustaagree-like decomposition can be any value
betweenl andW. Thus, the tree of clusters cannot approximate the origiisddnces by a factor better
thanWe.

We address this problem by introducing a new decompositiah dlows the diameter of each cluster
to be arbitrary large, while guaranteeing that (1) the distabetween clusters is sufficiently large, and (2)
after solving the problem independently for each cluster,dolutions can be merged together to obtain a
solution for the input metric.

Formally, letG = (V, E) be a graph thay-embeds into a tree. Let alsoc V(G), anda > 1 be a
parameter. Intuitively, the parametercontrols the distance between clusters in the resultintitipar

A (1,7, a)-well-separated tree-like decomposition is a triple (T¢, K¢, Ac), were(TE, K¢) is a(r, v)-
tree-like decomposition af, and.A¢ is defined as follows.
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Forasetd CV(G),letZy = {K € Kg|K N A # 0}. DefineTg’A to be the vertex-induced subgraph
vt

Proposition 2. Let A C V(G), such that G[A] is connected. Then, T isa subtree of T

Proof. Deferred to the full version of this paper. O O
Ag is computed in two steps:

Step 1. We define a partitiad;. A contains all the connected componentg aibtained after removing
all the edges of weight greater thai; /(v%/%a).

Step 2. We se#d := Ag. While there existd;, A, € Ag such that the diameter df,g’Al N T,?’A2 is
greater thas0~y, we removeA,, and A, from A¢g, and we addd; U As in Ag. We repeat until there
are no more such paies,, As.

5.1 Properties of Well-Separated Tree-Like Decompositias

We now show the main properties of a well-separated treeddé&composition that will be used by our
algorithm for embedding general metrics. They are sumradriz the following two lemmata.

Intuitively, the first lemma shows that the distance betwdi#arent clusters is sufficiently large, and at
the same time they don't share long parts of the Fge The technical importance of the later property will
be justified in the next section. It worths mentioning howebat intuitively, the fact that the intersections
are short will allow us to arrange the clusters4# in a tree, without intersections, incurring only a small
distortion.

Lemma 4. For any Ay, As € Ag, Da(A1, Ay) > Wa/(v*/2a), and T,?’Al N T,?’AQ is a subtree of Tj¢
with diameter at most 50~.

Proof. For anyA;, Ay € Ag, we have thatD(A;, Ay) > We/(v%/%a). SinceAg is obtained by only
merging sets, the first property holds. Moreover, the cansbn of A clearly terminates, and the second
property follows by the termination condition of the constion procedure. O O

The next lemma will be used to argue that when recursing insted, the corresponding induced metric
can be sufficiently approximated by a graph with small maxmadge weight.

Lemma 5. For any A € Ag, the Wg/(y/?«)-restricted subgraph of G| A], is connected.

Proof. For an embedding aff into a treeT’, and for disjointA;, A, C V(G), we say thatd; splits As in
T, if A intersects at least 2 connected componenfB[df(G) \ A;].

Claim 3. Let A, A2 C V(G), with A; N As = (), such that G[A4,], and G[A,] are both connected. Assume
that the diameter of T,g A T,g Az g greater than 50. Consider an optimal non-contracting embedding
of G into atree T, with distortion ~. Then, either A; splits A, inT’, or As splits Ay inT'.

Proof. SinceG[A;], andG[As] are both connected, it follows by Proposition 2 ti&t“!, and 7)o ** are
both connected subtreesiﬁ,ﬁ. Pick a patty = K1, Ko, ..., K;in T,g, with [ > 50+, that is contained in
TG,A1 N TG,AQ
K Koo
Assume that the assertion is not true. Uét= A, N (J'_, K;), and letd, = A, N (._, K;). LetT}
be the minimum connected subtreeTothat contains4’, and similarly let7: be the minimum connected
subtree ofl" that contains4},. It follows that7} N 7s = 0.

8



Figure 3: Case 2 of the proof of Lemma 5.

Let z; be the unique vertex df; which is closest tdl,. SinceTy is minimal, x; disconnects}.
Moreover, since[A] is connected, it follows that there exists, w’'} € E(G), such that the path from
w to w' in T passes through,. SinceDg(w,w’) < W, we obtain that there existss € {w,w’}, with
Dy (z5,21) < Dp(w,w')/2 < yDg(w,w'") /2 < yWg /2.

By Lemma 2, it follows that for any € A, there exists’ € A, such thatDg(z,z") < 20Wg.
Moreover, for anyr € A}, Dr(z,T2) = Dr(z,z1) + Dp(z1,T3). Thus, for anyz € A}, Dp(z,27) <
Dr(x1,27) + Dr(z,21) < YWa/2 + Dr(z,Ta) < yWa/2 + vDg(x, Alz) < 21WG’72.

Pickz € A\ N Ky, andz’ € 4] N K. By the triangle inequalityDr(z, z’) < Dy(z,25)+ Dr(z7,2') <
42We~2. On the other hand, the distance betwégn andk; in T,g is{ — 1. Thus, by Lemma 3 we obtain
that D (z, 2") > (I — 3)Wgy > 45Wg~?2, which contradicts that fact that the embedding\éfinto T is
non-contracting. O O

Fix an optimal non-contracting embedding@finto a treeT”, with distortion-y.

Fork > 0, let A’é be the partitiond afterk iterations of Step 2 have been performed, Wﬁ@ = Ac.

Assume that the assertion is not true, and pick the smallestich that there existd € A%, such
that theW /(v'/?«)-restricted subgraph @&[A] is not connected. Assume thatis obtained by joining
Ay, Ay € AE7L. By the minimality ofk, it follows that theW /(v'/2«)-restricted subgraphs 6#[4,], and
G[As] respectively are connected. Thig (A, A2) > Wa/(v/%a).

By claim 5, we can assume w.l.0.g. thd$ splits A;. Thus, by removingd, from 7', we obtain a
collection of connected componens. Consider the partitio] of A; defined by restricting?; on A;.
Formally, F|{ = {f N Ai1|f € F1, f N A; # 0}. We have to consider the following cases:

Case 1: There exists Z € Agq, with Z C A;, such that Z intersects at least two sets in F{. By
considering only edges of weight at md&t;/(v*/2«), the induced subgrapfi[Z] is connected. It follows
that there existy, zo € Z, with Dg(21, 22) < Wg/(’y3/2a), such that the path fromy, to 2z in T passes
through As. Thus, Dr(z1,22) > 2Dg(A1, As) > 2Wg/(v/%a) > 2yD(z1, 22), contradicting the fact
that the expansion df is at mosty.

Case 2:For any Z € Ag, with Z C A;,wehave Z C Z’, for some Z' € F;. Observe that for arit> 0,
any element indZ, is obtained as the union of elements4f. Thus, we can pick the minimugh> 1, such
that there exisB;, By € A% ", such that during iteration of Step 2, the seB = B; U B, is obtained,
with B C A, and such thaB; C Z], andB, C .Z%, for someZ;, Z}, € F}, In other words, we pick the
minimum j such that we can find sef$, B, € A/, ", that are contained ifl,, and neither of them is split
by A5 in T. W.l.o.g., we can assume tha&t splits By in T'. Thus, there exist’;, Cs C By, such that any
path betweerC; andCs in T passes througlB,. Moreover, any path fronB; to Bs in T' passes through
As. Thus, any path fron€’; to C in T' passes throughs,. This however contradicts the minimality ¢f
The scenario is depicted in Fig 3. O O



6 Approximation Algorithm for Embedding General Metrics

In this section we present an approximation algorithm fobedding general metrics into trees. Before
we get into the technical details of the algorithm, we giveirdormal description. The main idea is to
partition the input metrid\/ using a well-separated tree-like decomposition, and tlodre ghe problem
independently for each cluster of the partition by recursié\fter solving all the sub-problems, we can
combine the partial solutions to obtain a solution #ét There are a few points that need to be highlighted:

Termination of the recursion. As pointed out in the description of the well-separated-liteedecom-
positions, the clusters of the resulting partition mightéharbitrarily long diameter. In particular, we cannot
guarantee that by recursively decomposing each clustetbtegnosub-clusters of smaller diameter. To that
extend, our recursion deviates from standard techniqueg $he sub-problems are not necessarily smaller
in a usual sense. Instead, our decomposition proceduramgeas that at each recursive step, the metric of
each cluster can be approximated by a graph with smallerrmamri edge length. This can be thought as
restricting the problem to a smaller metric scale.

Merging the partial solutions. The partial solution for each cluster in the recursion is mabedding
of the cluster into a tree. As in the algorithm for unweighggdphs, we merge the partial solutions using
the treeT,g of the well-separated tree-like decomposition as a rougiicegmation of the resulting tree.
However, in the case of a well-separated decompositiorpahts ofT,g that correspond to different clusters
of the partition.A¢ might overlap. Moreover, since some of the clusters migHbbg, we need to develop
an elaborate procedure for merging the different treesdritee forA/, without incurring large distortion.

6.1 The Main Inductive Step

We will now describe the main inductive step of the algorithret M/ = (X, D) be a finite metric that-
embeds into a tree. At each recursive step performed oni@clrsof M, the algorithm is given a grapi
with vertex setd, thatc-approximates\/. In order to recurse in sub-problems, we compute a wellrsége
tree-like decomposition of;. We chose the parameters of the well-separated decongposibi that each
sub-clusterA, can bec-approximated by a graph that has maximum edge weight signifiy smaller than
the maximum edge weight @f. Formally, the main recursive step is as follows.

Procedure RCURSIVETREE
Input: A graphG with maximum edge weightV, thatc-approximates\/.
Output: An embedding of~ into a treeS.

Step 1: Partitioning. If G contains only one vertex, then we output a trivial tree caintg only this vertex.
Otherwise, we proceed as follows. We pick V(G), and compute &, c2, a)-well-separated tree-
like decomposition 7%, K¢, Ac) of G, wherea: > 0 will be determined later.

Step 2: Recursion.For anyA € Ag, let G4 be theW/a-restricted subgraph, with (G4) = A. We
recursively execute the procedure ®IRSIVETREE on G 4, and we obtain a tre6.

Step 3: Merging the solutions.In this final step we merge the tre§$' to obtains.

We define a tre@" as follows. We first remove frorﬁ’,g all the edges between vertices at leilc?,
andi50c? + 1, for any integeri : 1 < i < n/(50¢?). For any connected componeiitof the resulting
forest,T" contains a vertex’. Two verticesC, C’ € V(T') are connected, iff there is an edge between
C,andC" is T¢. We considefl to be rooted at the vertex which corresponds to the subtrég of
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that contains-. Furthermore, for eacH; € A, we define a subtre€; of T" as follows: T; contains
all the vertices” of T, such thatl’s ¢ visits C.

Lemma 6. There exists a polynomial-time algorithm that computes an unweighted tree 77, and for
any i € [k] amapping ¢; : V(T;) — V(T"), such that

o foranyi,j € [k], ¢:(Ti) N ¢;(T;) =0,
e foranyi,j € [k], for any v; € V(T;), and v; € V(T}), Dr(vi,v;) < Dpi(¢i(vs), ¢5(v;)) <
20(Dr(vi,v5) + 1) logn.

Proof. Deferred to the full version of this paper. O O

Note that the tred” might contain vertice§' € V(T'), such that for anyX € K¢, K ¢ C. We call
such a vertesteiner. First, for each steiner vertex € V(7") we add a vertex¢ € V(S). We have
to add the following types of edges:

e For anyCy,Cy € V(T'), such that bothC;, and C; are steiner vertices, we add the edge
{vey,ve, ) in S, with weightWe /(Ba).

e ForanyCi,Cy € V(T"), such that®y, is a steiner vertex, and there exists € A, such that
Cy € ¢1(11), we pick K; € T,?’Al, with K; € Cy, and an arbitrary; € K1, and we add the
edge{x1,vc, } in S. The weight of this new edge 1§/ (c*a).

e For any pairA;, A, € Ag, with A; # As, such that there exists an edgeTZih connecting
¢1(T1) with ¢o(T5), we add an edge betweeit't, and.S42. We pick the edge that connects
S41 with §42 as follows. PickCy,Cy € V(T), with C; € Ty, andC, € Tb, such that there
is an edge betweem (C1), andg,(Cs) in T'. We pick an arbitrary pair of points;, z2, with
z1 € K; € O, andzy € Ky € Cy, for somekK,, K» € K¢, and we connec4' with S42 by
adding the edgéz, x2} of length D (x4, z2).

Given the metricM = (X, D), the algorithm first computes a weighted complete gréph= (V, E),
with V(Gp) = X, such that the weight of each edge,v} € E(G) is equal toD(u,v). Let A be
the diameter ofM. Clearly, Gy is a A-restricted subgraph. The algorithm then executes theepioe
RECURSIVETREE on Gy, and outputs the resulting tree

Before we bound the distortion of the resulting embedding fivet need to show that at each recursive
call of the procedure RCURSIVETREE, the graphG satisfies the input requirements. Namely, we have
to show thatGG c-approximatesy/. Clearly, this holds foiGy. Thus, it suffices to show that the property
is maintained for each grapfi4, were A € Ag. Observe that sincé& c-approximatesy/, and M c-
embeds into a tree, it follows thét c2-embeds into a tree. Sin¢&¢, K¢, Ac) is a(r, ¢?)-well-separated
decomposition, we can assume the properties of lemmatai,dary = 2.

Lemma 7. For any A € Ag, G4 c-approximates M.

Proof. Deferred to the full version of this paper. O O

The next two lemmata bound the distortion of the resultingpetding ofG into S. The fact that the
contraction is small follows by the fact that the distanceMaen the clusters i is sufficiently large.
The expansion on the other hand, depends on the maximum olejbth recursion. This is because at each
recursive call, when we merge the tre&#5to obtainS, we incurr an extra®(!) log n-factor in the distortion.
Since at every recursive call the maximum edge weight of tbati graph decreases by a factoroagfthe
parametery can be used to adjust the recursion depth in order to optitheénal distortion.
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Lemma 8. The contraction of S isO(c"a).

Proof. Deferred to the full version of this paper. O O

Lemma 9. The expansion of S isat most (c°™) log n)'°8« &,

Proof. Deferred to the full version of this paper. O O

Theorem 2.

There exists a polynomial-time algorithm which given a metric M = (X, D) that c-embeds

into a tree, computes an embedding of M into a tree, with distortion (clog n)O(V logA),

Proof. By Lemmata 8, and 9, it follows that the distortion 8fis <M a(c?() logn)l°g« 2, By setting

o = 2\/logA,

we obtain that the distortion is at mastlog n)?(VIos &), O O

Acknowledgments We thank Julia Chuzhoy for many insightful discussions altkoei problem.
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A The Relation Between Embedding Into Trees and Embedding Ito Sub-
trees

In this section we study the relation between embeddingtiets, and embedding into spanning subtrees.
More specifically, leG = (V, E) be an unweighted graph. Assume tba¢mbeds into a tree with distortion
¢, and also thafs embeds into a spanning subtree with distoritn

Clearly, since every spanning subtree is also a tree, we have*. We are interested in determining
how large the rati@* /c can be. We show that for every, there exists: > n(, and am-vertex unweighted
subgraphG, for which the ratio i2(log n/ log log n). We complement this lower bound by showing that
for every unweighted grapfy, the ratio is at mosD(logn).

A.1 The Lower Bound

In this section we prove a gap between the distortion of emlibgdgraph metrics into trees, and into span-
ning subtrees. We do this by giving an explicit infinite fayrilf graphs.

Letn > 0 be an integer. We define inductively an unweighted gréps (V, E) with ©(n) vertices,
and prove thatz O(logn)-embeds into a tree, while any embedding(®finto a subtree has distortion
Q(log?n/loglogn).

Let G; be a cycle onlog n vertices. We say that the cycle @f is at level 1. GivenG;, we obtainG;
as follows. For any edgéu, v} that belongs to a cycle at levelbut not to a cycle at level— 1, we add a
pathp, , of lengthlog n — 1 between: andv. We say that the resulting cycle induced by path and edge
{u,v} is atleveli + 1.

Let G = Glogn/loglogn- 1L iS €aSY to see thal’ (G)| = ©(n). Moreover, every edge a¥ belongs to
either only one cycle of sizlegn at levellog n/ log log n, or exactly two cycles of siziegn; one at level
i, and one at level + 1, for somei, with 1 < i < logn/loglogn.

We associate witlir a treeT = (V (T¢), E(T¢)), such thal/ (T¢) is the set of cycles of lengtlog n
of G,and{C, C'} € E(T¢) iff C andC’ share an edge. We considgr to be rooted at the unique cycle of
G at level 1.

Lemma 10. Any embedding of G into a subtree has distortion Q(log? n/loglog n).

Proof. LetT" be a spanning subtree 6f Letk = logn/loglogn. We will compute inductively a set of
cyclesC, while maintaining a set of edgds C F(G). Initially, we setC = C1, where( is the cycle ofG
at level 1, and®’ = (). At each iteration, we consider the subgraph

G’z(UC)\E’.

cec

We pick a cycleC' ¢ C, such that” shares an edgewith G, and we add” in C, ande in E’. Observe
that at every iteratioi’ is a cycle. Thus, we can piekandC' such that ¢ T'. The process ends when we
cannot pick any more suchandC, withe ¢ T'.

Consider the resulting grapf’ = (UCEC C‘) \ E'. SinceG' is a cycle, it follows that there exists an
edgee’ = {u,v} € G’, such that’ ¢ T. Since there is no cycle’ ¢ C, with ¢/ € C’, it follows that
¢’ belongs to a cycle at levél. Thus, there exists a sequence of lenghn cycles, K1, ..., K, with
K, = (1, andK;, = C’, and such thak; € C, for eachi, with 1 < ¢ < k, and the there exists a common
edgee; € F'in K; andK, 1, for eachi, with1 < i < k.
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Consider the sequence of graphs obtained fédmfter removing the edges, e _1,ex, . . ., e1, in this
order. It is easy to see that after removing each edge, ttendis betweem andwv in the resulting graph
increases by at lea$t(log n). Since none of there edges isih it follows that the distance betweernand
vin T'is at least: log n = log? n/ log log n. O

Lemma 11. There exists an embedding of G into a tree, with distortion O(log n).

Proof. We will construct a treel’ = (V(T), E(T)) as follows: Initially, we setV(T') = V(G), and
E(T) = 0. For the cycleC; at level 1, we pick an arbitrary vertex, € C;. Next, for eachu € Cy, with
u # ve,, we add an edge betweerandve, in T of length D¢ (u, vey ).

For every other cycl€” at some level > 1, lete’ = {«/, v’} be the unique edge that' shares with a
cycleC” at leveli — 1. We pick a vertexc: arbitrarily between one of the two endpointsedf For every
vertexz € C’, with x # ver, we add an edge betweerandver in T', of lengthDg (2, ver ).

Clearly, the resulting graph’ is a tree. It is straightforward to verify that for evefy,v} € E(T),
Dp(u,v) = Dg(u,v), and thus the resulting embedding is non-contracting.niaias to bound the expan-
sion for any pair of vertices, y € V(G). We will consider the following cases.

Case 1. There exists a cydéc V(T¢), such thate, y € C: We have

Dr(z,y) = Dr(z,vc)+ Dr(ve,y)
D¢(z,vc) + Da(ve, y)
logn

D¢(z,y)logn

IN A

Case 2. There exigt,,C, € V(T¢), with z € C,, andy € C,, such thatC, lies on the path if from
C, to the root of/o: Consider the patliy, . .., K; in T, with C, = Ky, andC, = K;. For each,
with 1 <i < [, lete; = {z;,y;} € E(G) be the common edge &f; and K, ;. Note that the shortest
pathp from x to y in G visits at least one of the endpoints of each edgeAssume w.l.o.g. thagh

Visits x1, xo, . .., x;—1 (in this order). Observe that eachwith 1 < i < [, for eachw € K; we have
either Dp(x;,v) = Dg(z;,v), or Dp(x;,v) = Dg(xi,vi) + Da(yi,v) < Dg(x;,v) + 2. Thus, we
obtain
Dr(z,y) < Dr(z,z1)+ Dr(z1,22) + ...+ Dp(x—9,2-1) + Dr(x-1,9)
< Dg(z,21) + Dg(x1,22) + ... + Dg(w1-2,71-1) + 2(1 = 2) + D (x1-1,y) + logn/2
< Dg(z,y) + 2logn/loglogn + (logn)/2
< Dg(z,y)3logn

Case 3. There exigt,, C,, C. € V(TI¢), with z € C,, andy € Cy, such thatC,, is the nca otC,, andC,
in T: This Case is similar to Case 2.

O

Theorem 3. For every ng > 0, there exists n > ng, and an n-vertex unweighted graph G, such that the
minimum distortion for embedding G into a treeis O(logn), while the minimum distortion for embedding
G into any of its subtrees is Q(log? n/ log log n).

Proof. It follows by Lemmata 10 and 11. O
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A.2 The Upper Bound

We now complement the lower bound given above with an alma@dtining upper bound for unweighted
graphs. The idea is to first use t@¢1)-approximation algorithm from Section 4 for embedding uighiged
graphs into trees to obtain the clusterikig. Then, by slightly modifying this clustering, we can gudem
that each cluster induces a connected subgraph of thealrggiaph, and thus it can be easily embedded into
a spanning subtree. Next, for each cluster we define a newmagahosen clustering. This new clustering
will be used in the final step to merge the computed subtreéseatlusters, into a spanning subtree of the
graph, while losing only & (log n) factor in the distortion.

Let G = (V, F) be an unweighted graph, that embeds into an unweighted ftealistortionc. For a
subsetl’’ C V(G), and for everyu,v € V', we denote byDy (u,v) the shortest path distance between
andv in G[V']. If G[V'] is disconnected, we can assume thgt (u, v) = oo.

Consider the set tree-like partitiqlT,g ,Ka) constructed by the algorithm of Section 4. Uet =
{K,,,K,,,...},and assume that¢ is rooted atk,.

Let Fc be the forest obtained by removing frcﬂ?,g all the edges between vertices at levelg and
215 + 1, for all 7, with 1 < j < |dept{T}¢)/21| — 1. Let C(Fx) be the set of connected components of
Fy. Let

7= U yUm

AeC(Fe) | KieA

Clearly, J is a partition ofV(G). Let Ty be the tree on vertex set, where the edg¢J;, J;} is in Ty if
there exist{ K/, K;/} € E(TS), such thatk; € J;, andK; € .J;. We considefT'; as being rooted at a
vertexJ, € J, whereK, € J,.

Lemma 12. For each J; € J, G[J;] is connected.

Proof. Assume w.l.0.g., thaf; is the union of sets of vertices);, for all K; € A, whereA € C(Fx)is a
subtree ofl’;. Assume thaf<, is the vertex ofA that is closest td<, in T,Q. Let p; be the unique path in
A from K, to aleafK; of A. Let aIsoJ} = UKkem K. It suffices to show that for each lefafthe induced
subgraph[J!] is connected.

Letp, = K1, Ka, ... K;, whereK,, = K1, andK; = K,. Note thatt > 21. Assume now tha6[J!] is
disconnected, and l€t(G[J!]) be the set of connected component&:af!].

Claim 4. There exists ¢/, with 1 < ¢/ < t,and C; # Cs € C(G[Jf]), such that Ky N Cy # (), and
Ky nCsy # 0.

Proof. Assume that the assertion in not true. That is, for eactwith 1 < ¢ < t, Ky is contained in a
connected componeft,, € C(G[J!]). Observe that for eachf, with 1 < ¢ < ¢, there exists at least one
edge betweerk;» and K. This means that all th€’,s are in fact the same connected component, and
thusC(G[J!]) contains a single connected component. It follows tHas connected, a contradiction.]

Claim 5. Thereexist C1, Cy € C(G[J}]), suchthat K13 N Cy # (), and K17 N Cy # 0.

Proof. Lett’,with1 <¢ <t,andC;,Cs € C(G[Jf]) be given by Claim 3. I’ = 11, then there is nothing
to prove.

Otherwise, pick; € Ky N Cq, andvy € Ky N Cy. By the construction ok, we have that there exists
a pathp from v; to vy, such thap is the concatenation of the paths, . .., ¢1, 4,4}, ..., q),, where for each
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i € [1,t], ¢; andq; are paths of length at mosin K;. Moreover, there exists a papHfrom v, to vg, such
thatp is the concatenation of the paths, ..., w;, w, w;, ..., w;, where for each € [t', t], w; andw), are
paths of length at mostin K;.

If ¢ > 11, then pickv] € ¢i1, andv, € ¢};. Otherwise, ift’ < 11, pick w} € ¢qi11, andvy € wi;.
Clearly, in both cases we havé € Cy, andvy € Cs. O

Let now(C1,C5 € C(G[J}]) be the connected components given by Claim 4. Rick K, n Cy, and
vo € Ky N Cs. Letp be the shortest path betweepandwv, in G. We observe that there are two possible
cases fop:

Case 1y is the concatenation of the paths, ..., q1,¢, ¢}, ..., ¢;;, where for each € [1,11], ¢; andg,
are contained ;.

Case 2:p is the concatenation of the paths, ..., q,q,4;,- -, ¢};, where for eachi € [11,], ¢; and,
are contained ;.

Since the above two Cases can be analyzed identically, wenass.l.0.g. thap satisfies Case 1. Observe
that for each € [1,11), eachg; and eachy, visits c vertices ofK;. It follows that the length op is greater
than20¢, contradicting Lemma 2. O

For eachJ; € 7, we define a sel; of subsets of/; as follows. First, we pick a vertex € J;, and we
construct a BFS tre&);, of G[J;], rooted atr;. Note that by Lemma 127[J;] is connected, and thus there
exists such a BFS tree. We also pick an integgere [0, 100¢), uniformly at random. Lef;, be the forest
obtained froml’;, by removing the edges between vertices at levelg:j + «;, and100cj + a5, + 1, for
depthr,,)

T00c
connected components 6f;,. Clearly, 7; is a partition ofJ;.

all j,withl < j < — 2. The set7; can now be defined as the set of sets of vertices of the

Lemma 13. For each J;, J; € J, suchthat J; isthe parent of .J; in Tz, and for each J; ;, € J;, there exist
u € Jj,andv € Jj, such that {u,v} € E(G).

Proof. It is easy to verify by the construction & that.J; is a subset of the vertices of at least, and at
most42c¢ consecutive levels of a BFS tree@f Letly, ..., [; be these levels, whelgis the level closest to
the root of the BFS tree @¥. For every vertex € J;, there exists a vertexe J;, such thafz,y} € E(G),
iff 2 € I1. Thus, it suffices to show that for evedy, € 7;, J;j Nl = 0.

It is easy to verify that for every < J;, there existsu € Iy, such thatD;, (v,u) < 42c. In the
construction of7;, we pick a vertex; € .J;, and we compute a BFS tré€ of G ;.. EveryJ;, € J; is
a subtreeT; ;. of T rooted at a vertex; . Tj contains all the predecessorsigf, that are at distance at
mostd; i, for somel00c < §; < 200c. Assume now that there is no vertexigfin the 42¢ first levels of
T; . Pick a vertex ofl; ;. at level42c + 1. By the above argument, there exists a vertex [; that is at
distance at most2c from v. This implies thatu is contained within th&4c + 1 first levels of T} ;.. Thus,
Tj7k Ny 75 @, ande,k Ny 75 0. ]

Lemma 14. For each J;,J; € J, such that J; is the parent of J; in T'7, and for each u,v € J;, and
u',v" € Jj, such that {u,v'} € E(G), and {v,v'} € E(G), Dj,(u,v) < 90c.

Proof. Note that the partitioriCs; is obtained on a BFS tree 6f with root somer € V(G). If r € J;, then
Dy, (u,v) < Dy, (u,r)+ Dy, (r,v) < 84c.
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It remains to consider the case¢ V(G). This implies that there existd, € 7, such thatJ,, is the
parent ofJ; in T'7. Assume that the assertion is not true. That is, there existe J;, andu/,v" € Jj,
with {u,v'} € E(G), {v,v'} € E(G), andD,(u,v) > 90c. By the construction ok, and since* ¢ J;
it follows that there exist, z € J;, andw', 2’ € Ji, with {w,w'} € E(G), and{z,2'} € E(G), and
moreover there exists a shortest pathn G from w to u, and a shortest pafh» from v to z in G, such that
p1 andp. are contained ;. It is easy to verify that the length of each of the pathandp- is at least2c.

Furthermore, there exists a pathfrom w’ to 2/, and a pathp4 from «/ to v/, such that bothys andp,
do not visitJ;. Letp5 be the path obtained fromy by adding the edgegw, w'}, and{z’, z}. Similarly, let
p/, be the path obtained fropy, by adding the edgefu, v'}, and{v’, v}.

Let z; be a vertex of; such thatD¢g(z1,u) > 5¢, andDg(z1, w) > 5c. Similarly, letzo be a vertex
of py such thatD¢g (z2,v) > 5¢, andDg (x4, z) > 5¢. We need to define the following set of paths:

e Let ¢ be the subpath gf; from u to z;.
e Let g, be the path obtained by concatenating the subpagh fsbm z; to w, with ps3.
e Let g3 be the subpath gi; from z to x-.
e Let gy be the path obtained by concatenating the subpath 5bm x5 to v, with py.

It is straight-forward to verify thaD¢ (g1, g3) > 5¢, andD(q2, q4) > 5c. By applying Lemma 1, we obtain
that the optimal distortion for embeddirdginto an unweighted tree is more thas a contradiction. [

Theorem 4. If an unweighted graph G can be embedded into a tree with distortion ¢, then G can be
embedded into a subtree with distortion O(clog n).

Proof. We can compute an embedding @Gfinto a subtre€l’ as follows. Initially, we sefl” equal to the
empty subgraph. We pick a vertexe V(G), and we compute &, ¢)-partition of G. We compute the
partition 7, and for each/; € 7, we compute the partitioly;, as described above. For eaghe 7, and

for eachJ; ; € J;, we add tal’ a spanning tree of; ; of radiusO(c).

It remains to connect the subtrees by adding edges betweeetsy; ;. Observe that it ¢ J;, thenJ;
contains a single sef; ;.

Assume now that ¢ J;, and let.J; be the parent of; in 7;. By Lemma 13, for eacll; ;, € J;, there
an edge betwee; ,, and.J; in GG. For each suchy; ;,, we pick one such edge, uniformly at random, and we
add ittoT.

Consider now two subsets i, J;; € J;. Itis easy to see thaf; ;, and.J;; get connected to the same
subset/; ; € J;, with probability at leafl — f’ooocc = (1). Thus, the probability that two such subsets have
not converged to the same subset in an ancestor@fieg n) levels is at most /poly(n). Since there are
at mostn? pairs of such subsets, ;, it follows that the above procedure results in a tree wititaition
O(clog n) with high probability. O
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B Well-Separated Tree-Like Decompositions — Omitted Procf

B.1 Proof of Proposition 2

SinceG[A] is connected, it suffices to show that any edg# G is either contained in som& € K¢, or
the end-points of are contained in set&, K’ € K¢, such that there is an edge betwdérand K’ in T,g.
Assume that this is not true, and pick an edge, v} € FE(G), with v; € K7, andvs € K, for some
K1, K5 € Kg, such that there is no edge betwdépand K5 in T,Q.

Let K, € Kg be such that € K,. Assume first thaf(; is on the path fron¥, to K, € K¢ in T,g.
This implies however thab(v;, v2) > W, contradicting the fact thdt,, v2} € E(G).

It remains to consider the case whéte is not in the path fron¥ to K,., and K5 is not in the path
from K7 to K. in T,g . Then by the construction df; we know that any path from a vertex i, to a
vertex inK5 in G has to pass through an ancestorf, and K5. Thus, there is not edge betweg&nh and
K5 in G, a contradiction.
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C Approximation Algorithm for Embedding General Metrics — O mitted
Proofs

C.1 Proof of Lemma 6

Claim 6. For any A;, A; € Ag, with A; # A;, either T, NT; = (), or thereexistsv € V(T'),and vy, ... , v,
for some > 0, such that vy, ..., v; arechildren of v, and 7; N T; = {v,v1,..., v}

Proof. It follows immediately from the fact that for any;, A; € Ag, the diameter ng’Ai N T,?’Aj is at
most50c?. O

Let r be the root off". Initially, 7" contains a single vertexX. To simplify the discussion, we assume
w.l.o.g., thatr is a leaf vertex ofl’. We also assume that for every edge v} € E(T), there is a treq;
that containgu, v}. This is because if there is no such tree, then we can simpbduace a new subtreg,
that contains only the vertices andv.

For everyT; that visitsr, we introduce il a copy¢;(T;) of T;, and we connecp;(r) to .

We proceed by visiting the vertices @fin a top-down fashion. Assume that we are visiting a vertex
v € V(T), with parentp(v), and childrerwy, ..., v;. At this step, we are going to introduce T a copy
¢;(T;) of T;, for everyT; that visitsv, and we have not considered yet. We consider the followisgsa

Case 1. Thereisno 7; that visits v, and p(v).
Let 7, be a subtree that visits(v). For everyT, that visitsv, and we have not considered yet, we
introduce inT” a copy¢y(1}) of T, and we connecpy,(v) to ¢, (p(v)).

Case 2: There exists T; that visits v, and p(p(v)), and thereisno j # i, such that 7 visits v, and p(v).
For everyT, that visitsv, and we have not considered yet, we introduc&"ira copy¢;(T;) of T,
and we conneapy(v) to ¢;(v).

Case 3: Thereisno 7; that visits v, and p(p(v)), and there exists 7} that visits v, and p(v).
Leta € [k] be the minimum integer such th&} visits v, andp(v). For everyT, that visitsv, and we
have not considered yet, we introduceliha copyey,(73) of Tj,, and we connecb,(v) to ¢, (v).

Case 4: There exists T; that visits v, and p(p(v)), and there exists 7;, with ¢ # j, that visits v, and p(v).

Leta € [k] be the minimum integer with # 4, such thatl, visits v, andp(v). For everyT; that
visits v, and we have not considered yet, we introduc&"ira copy¢;(7}) of T;. With probability
1/2, we connecty,(v) to ¢;(v), and with probabilityl /2, we connecty,(v) to ¢4 (v).

Claim 7. T" isatree.

Proof. 1" is a forest since each;(T;) is a tree, and also each)(7;) is connected to exactly ong;(T;),
such thatl; was considered before Also, T’ is connected since every vertex Bfis contained in some
subtre€T;. O

Claim 8. For any v € V(T'), there exists at most one i € [k|, such that T; visits both v, and p(p(v)).

Proof. Assume that the assertion is not true. I[gt7}; be subtrees that visit both andp(p(v)). Then,T;
and7} also visitp(v). This however contradicts the definition of the subtrégs . ., 7j,. O

21



Claim 9. Leti,j € [k], withi # j, be such that 7;, and 7); both visit a vertex v € V(T'), but they do not
visit p(v). Then, with probability at least 1/2, there exists ¢ € [k], such that 7} visits v, and p(v), and both
¢i(v), and ¢;(v) are connected to ¢;(v).

Proof. Recall the procedure for constructifitj, described above. Consider the step in which we add to
the subtrees that visit the vertexandv is their highest vertex ifi’. Clearly7T;, and7}; are both in this set
of subtrees. Observe that in cases 1, 2, and 3, the first eivird assertion happens with probability This
is because all the trees that we consider are connected $autine subtree.

In the remaining case 4, there are subtrEesl’; such that each subtree that we consider is going to be
connected td;; with probability 1/2, and toT}; with probability 1/2. Thus, with probabilityl /2, T; and
T; are going to be connected to the same subtree. O

Claim 10. Leti,j € [k], with i # j, be such that T; visits v, and does not visit p(v), and Tj visits both v,
and p(v), for some v € V(T'). Then, with probability at least 1/4, there exists L < 4, and t(1),...,t(L),
such that

e {(1) =4,and t(L) = j,
o foreachl € [L — 1], ¢4y (T3()) is connected t0 ¢y 11y (Ty141))-
Proof. We have to consider the following cases:

Case 17} visits p(p(v)).
In this casep;(v) is connected t@;(v) with probability at least /2.

Case 21; does not visiip(p(v)).

Let w be the smallest integer, such tha} visits v, andp(v), but does not visip(p(v)). If w = j,
then¢; (v) is connected t@;(v) with probability at least /2.

Otherwise, ifw # j, then with probability at least/2, ¢;(v) is connected t@,,(v). Moreover, by
Claim 9, with probability at least/2, there existsv’ € [k], such that bothp,, (p(v)), and¢;(p(v)),
are connected te,(p(v)). Observe that the above two events are independent. Thtiswith
probability at least /4, the sequence of subtreEs T, 7., T}, satisfy the conditions of the assertion.

O

Claim 11. Let T3, T); be two subtrees such that they both visit some vertex v € V(7). Then, with probability
at least 1 — n~%, there exists L = O(log n), such that for any 7;, 7}, there exists a sequence of subtrees
Tt(1)> - ,Tt(L), with

e t(1) =4,andt(L) = j, and
e foranyl € [L — 1], ¢y (Ty)) isconnected to ¢y 11y (Ty141))-

Proof. By the previous claim, we know that with constant probapititere exists a path of length at most
3 betweeny;(T;) and¢;(T;) in T". If this happens, then we have a small path betwg¢®;) and¢; (7).
Otherwise, we look at the treés (1) and¢; (1):) which are connected t9;(7;) and¢;(7};) towards the
root, and they visit the vertex(p(v)). Note that with constant probability (by the previous claggin)
there exists a path of length at mdsbetweenyp, (7;) and¢; (7}). By continuing this argument towards
the root6 log n times, it follows that with probabilitt — » = there exists a path of length at m@stlog n.
By an union bound argument it follows that with probability- n~* every¢;(T;) and¢;(7;) which have

a vertex in common are connected by a path of length at &tdsg; n in 7. O
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Claim 12. Let T;, T; be two subtrees such that they both visit some vertex v € V(7). Then, with probability
at least 1 — ’I’L_4, for any v; € V(TZ), and for any v; € V(TJ), DT(UZ‘,’UJ') < DT/(qbi(Ui),(ﬁj(Uj)) <
(Dr(vi,vj) +1)O(logn).

Proof. Observe that since the diameter of the intersection of tlee dubtrees is at most 2, in order to
approximate the distance betwegy{v;) and ¢;(v;) for all v;,v;, it suffices to approximate the distance
betweenyp;(v) and¢;(v). By the previous claim, it easily follows that there a patHesfgth20 log n that
connectsp;(v) to ¢;(v). O

In order to finish the proof, it suffices to consider paisT; that do not intersect. Lef;, T; be such a
pair of subtrees, and let;, z; be the closest pair of vertices betweBnand7;. Letp be the path between
z;toz; in T'. Assume thap visits the subtree;, T}y, . . ., Tyq), T;. We further assume w.l.0.g., that for
eachT; ), p Visits at least one edge froff) ), that does not belong to any ott&y,), with s # s’. Assume
that for eachs € [I], p entersTy,) in a vertexy,, and leavedy ) at a vertex:;. We have

!
Dri(¢i(xi), ¢5(z5)) = Dpo(di(xi), dy(1y(y1)) + ZDT/(¢t(s) (Ys), Pu(s) (25)) +

s=1

-1
> " Dri($ys)(25): Sugsery Wss1)) + Do (e (21), 65 ()
s=1

1
< O(l-logn)+ Y Dr(ys, z)

s=1

= O(Dr(z;,v;)logn)

Similarly to the proof of the above claim, we observe thatsithe intersection of any two trees is short,
and we approximate the distance between the closest pajr ahdT’, it follows that we also approximate
the distance between any pair of verticesigdandT};.

C.2 Proof of Lemma 7

The next claim is similar to a lemma given in [BCIS05], modiffer the case of embedding into trees.

Claim 13. Let a > 0. Let G be an a-restricted subgraph of M, and let G’ be an ac-restricted subgraph of
M, withV(G) = V(G'). If G is connected, then for any u,v € V(G), D(u,v) < Dgr(u,v) < eD(u,v).

Proof. Let M’ be the restriction o/ onV(G). Consider a non-contracting embedding\éf into a treel”
with distortion at most. Consider an edggu, v} € E(T"). We will first show thatD (u, v) < ac. LetS be
a minimum spanning tree @f. If {u,v} € E(S), then sinc& is connected, it follows thab(u,v) < a.
Assume now thafu,v} ¢ E(S). LetT, andT, be the two subtrees df’, obtained after removing the
edge{u, v}, and assume thdt, containsu, andT;, containsv. Letp = z1,...,x), be the unique path in
S with u = z;, andv = z,. Observe that the sequence of vertices visitegh Bjart from a vertex i,
and terminate at a vertex ifi,. Thus, there exists € [|p| — 1], such thatw; € T, while v;11 € T. It
follows that the edgéu, v} lies in the path fromy; to v; 11 in 77, and thusDy» (u, v) < Dy (v;, v11). Since
{v;,vi+1} is an edge of5, we have by the above argument tiatv;, v; 1) < a. Since the embedding Ifi
has expansion at mostit follows that D (v;, viy+1) < ac. Thus, Dy (u,v) < ac.
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Consider now some pait,y € V(G). If no vertex is embedded betweenand y, then by the
above argumentD(z,y) < «c, and thus the edgézr,y} is in G’ and Dg/(x,y) = D(x,y). Oth-
erwise, letzy,..., 2z, be the vertices appearing i betweenz andy (in this order). Then the edges
{z,21},{21, 22}, .-, {2k-1, 2k}, {2k, y} all belong toG’, and therefore

D¢i(z,y) < Dgi(x,21)+ Dgr(21,22) + ... Dgr(2k-1, 21) + Do (21, y)
= D(x,z1)+ D(z1,22) + ... D(2k-1, 2zx) + D(2k, )
Dpi(x, z1) + Dy (21, 22) + ... + Dpr (251, 2) + Do (25, y)

= DT’(I’,y) < CD(Z‘,y)

IN

O

By the construction of the set, it follows that alW /c?-restricted subgraph with vertex sdt is
connected. Thus, by claim 1B, c-approximatesD.

C.3 Proof of Lemma 8

In order to bound the contraction &f, it is sufficient to bound the contraction between pairs otives
x1,x2 € V(G), such that eithefx1, x2} € S, or betweenc; andz, there are only steiner nodes.$h

We will prove the assertion by induction on the recursiv@staf the algorithm. Consider an execution
of the recursive procedureER URSIVET REE, with input a graphG with maximum edge weightV. If G
contains only one vertex, then assertion is trivially trd¢herwise, assume that all the recursively computed
treesS4 satisfy the assertion.

Consider such a pair;, 25 € V(G), and assume that in the path framto =, in S, there arek > 0
steiner nodes. If there exists € Ag, such thatr1,z2 € A, then the assertion follows by the inductive
hypothesis.

Assume now that there exidt;, As € Ag, with Ay # As, such thate; € Ay, andzs € A,. It follows
thatDs(:L'l,:L'g) = (k‘ + 1)W(;/(c?’oz). PickC1,C5 € V(T), andKi, Ky € Kq, such thatr; € K7 € C,
andz, € Ko € Cy. We haveD7/(¢1(C1), ¢2(C2)) = k+ 1. By Lemma 6, we obtaiD(C1,Cs) < k+1.
Thus, Dye (K1, Ka) < (k + 2)50c?. By Lemma 3,D(x1,72) < ((k + 2)50c® + 2)Wgc?. Thus, the

Ds(x1.23) o (h250242Wac® _ 104.7,.

contraction oncy, x2 IS D(z1,12) = (h+1D)Wa/(Ga)

C.4 Proof of Lemma 9

We will prove the assertion by induction on the recursiv@staf the algorithm.

Consider an execution of the recursive proceduee BrSIVETREE, with input a graphG with maxi-
mum edge weightVi. If G contains only one vertex, then the expansion of the compueds at most 1.
Otherwise, at Step 2 we partitidri(G) into A, and at Step 3, for each € A; we define the grapty 4,
and recursively executeERURSIVETREE on G4, obtaining an embedding @f 4 into a treeS*. Assume
that for eachd € A, the expansion o84 is at most.

Considerz,y € V(G). Assume thatr € A;,, andy € A; , for someA; , A;, € Ag. If A;, = A;,,
then the expansion is at mastbe the inductive hypothesis. We can thus assumeAhat A;,. Pick
K., K, € Kg,andC,,Cy, € V(T), such thatr € K, € C,, andy € K, € C,. Letp be the path between
i, (Cy), andg;, (Cy) in T".

Let alsog be the path fromx to y in S. Assume thag visits the sets it in the order4, , A;,, ..., Ay, .
Let v;, andv] be the first and the last respectively vertex4f visited byq Similarly, let¢;, (C;), ¢;,(CY)
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and be the first, and the last respectively vertex,0fT’;,) visited byp. For eacly € [k|, pick K;, K| € K¢,
such thaw; € K;, andv} € K.
Lets = Wg/(ca). We have:

k k—1
Ds(z,y) = Y Ds(vj,v}) + Y Ds(vjr,vj41)
7j=1 j=1

k k—1
SZ D(”j? 2);) +0 DT’((Zsji(Cz{)a ¢ji+1 (Cl-i-l))
j=1 J=1

IN

k—1
(24 Dyg (K, Kj)) +205logn Y (14 Dr(C;, Ciy1))
j=1

IN

EWec?

M-

I
—_

J
k—1

(2+100¢* Dy (Cj, C)) + 206 logn Y (1 + Dr(C, Ciy1))
j=1

IN

EWac?

IVE

Il
—

J
(1026Wec* + 405 log n) Dy (Cy, Cy)
(1026Wec! + 406 log n) Dyg Ky, Ky)
40Wglogn., D(z,y)

ASa A Weace

VANVAN

IN

(1026 Wt +

+2)

Sinced;, # A;,, it follows thatD(z,y) > § = W¢/(c*a). Thus,

40W¢g logn
Ao

D(ac,y) 3 D(ac,y)
(WGc + 2¢’« Wo )

)3c3aD(x,y)

Ds(z,y) < (1026Wgc* +

401
< (1026t 4 =2
c°

< (306¢¢” o+ 1201og n) D(z, y)

Given a graph of maximum edge weidi;, the procedure RCURSIVET REE might perform recursive
calls on graphs with maximum edge weight = W/a. Since the minimum distance i/ is 1, and the
spread of\/ is A, it follows that the maximum number of recursive calls cambmostiog A/ log «. Thus,

Ds(a,y) < (M logn)*e«2D(z,y)
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