Math 8500 Algorithmic Graph Theory, Spring 2017, OSU

Lecture 4: Max-Cut and Szemeredi's Regularity Lemma (cont.)

Instructor: Anastasios Sidiropoulos

Scribe: Jason Bello

1 ℓ -Way Cut / Max ℓ -Cut Problem

Input: G=(V,E) (assume unweighted for simplicity), n=|V|.

Goal: Find partition
$$S = S_1, \ldots, S_\ell$$
 of V maximizing $|E(S)|$ where $E(S) = \{\{u, v\} : u \in S_i, v \in S_j \text{ for some } i \neq j\}.$

This is a another problem for which we do not know an algorithm that outputs an optimal solution, but as we will show, our algorithm can output a solution that is "close" to optimal. Before we can express our algorithm, we need to set up some notation and state an important lemma.

So let G = (V, E) and $A, B \subseteq V$, then let e(A, B) = |E(A, B)| where E(A, B) is the set of edges between A and B. Now let $d(A, B) = \frac{e(A, B)}{|A| \cdot |B|}$. Now we can state the following definition.

Definition 1. Suppose $A \cap B = \emptyset$. Then we say that (A, B) is ε -regular if for all $X \subseteq A$ with $|X| \ge \varepsilon |A|$ and for all $Y \subseteq B$ with $|Y| \ge \varepsilon |B|$, we have $|d(X, Y) - d(A, B)| < \varepsilon$.

With this notation and definition at our disposal we can now state Szemeredi's Regularity Lemma.

Lemma 1 (Szemeredi's Regularity Lemma). For all $\varepsilon > 0$, for all $m \in \mathbb{Z}^+$, there exists $P(\varepsilon, m), Q(\varepsilon, m) \in \mathbb{Z}$ such that for all graphs G = (V, E) with $n \geq P(\varepsilon, m)$ there exists partition V_1, \ldots, V_k of V such that

- i. $m \le k \le Q(\varepsilon, m);$
- ii. $\lceil \frac{n}{k} \rceil 1 \le |V_i| \le \lceil \frac{n}{k} \rceil$;
- iii. All but εk^2 of the pairs (V_i, V_j) are ε -regular.

Remark. Partitions that satisfy iii. in Szemeredi's Regularity Lemma are called ε -regular partitions.

Now let us develop some more notation. Let V_1, \ldots, V_k is a partition of $V, K = \{1, \ldots, k\}$, and $d_{i,j} = d(V_i, V_j)$. For $X \subseteq V$, $I \subseteq K$, let $X_I = \bigcup_{i \in I} X_i$ where $X_i = X \cap V_i$. Let $S, T \subseteq V$ such that $S \cap T = \emptyset$. Let

$$\Delta(S,T) = e(S,T) - \sum_{i \in K} \sum_{j \in K} d_{i,j} \cdot |S_i| \cdot |T_j|.$$

Remark. If (V_i, V_j) is ε -regular then $e(S_i, T_j) \approx d_{i,j} \cdot |S_i| \cdot |T_j|$. In other words, $\Delta(S, T)$ measures the "deviation from regularity".

Definition 2. We say that V_1, \ldots, V_k is $\underline{\varepsilon}$ -sufficient if $|\Delta(S,T)| \leq \varepsilon n^2$ for all $S, t \subset V$ with $S \cap T = \emptyset$.

The following lemma will tell us that as long as k is large enough the partition given by Szemeredi's Regularity Lemma is also 4ε -sufficient.

Lemma 2. An ϵ -regular partition with $k \geq \frac{1}{\epsilon}$ is 4ϵ -sufficient.

Proof. Suppose $V_1, \ldots V_k$ is ϵ -regular partition and $v = \lceil \frac{n}{k} \rceil$ where n, k are as defined in Szemeredi's Regularity Lemma. Let $S, T \subseteq V$ such that $S \cap T = \emptyset$ and let

$$L_2 = \{(i, j) \in K \times K : |S_i| \le \varepsilon v \text{ or } |T_j| \le \varepsilon v\},$$

$$L = \{(i, j) \in K \times K : i \ne j \text{ and } (V_i, V_j) \text{ is } \varepsilon\text{-regular}\},$$

$$L_1 = L \setminus L_2, L_3 = (K \times K) \setminus (L_1 \cup L_2), \text{ and } L_4 = \{(i, i) : i \in K\}$$

Then $\Delta(S,T) = \Delta_1 + \Delta_2 + \Delta_3 + \Delta_4$ where $\Delta_i = \sum_{(i,j)\in L_i} (e(S_i,T_i) - \sum_{j\in K} d_{i,j} \cdot |S_i| \cdot |T_j|)$. So then we have that for all $i \in \{1,2,3,4\}$, $\Delta_i \leq \varepsilon r^2 k^2$ and so $\Delta(S,T) \leq 4\varepsilon n^2$. Thus, the partition is 4ε -regular.

An important side-note that we've been omitting is if these ε -regular partitions can be computed in a reasonable amount of time. Szemeredi's Regularity Lemma tells us that they exist but not necessarily that we can construct them efficiently. Luckily, our next theorem does.

Theorem 1 (Alon, Duke, Lehmann, Rodd, Yuster). An ε -regular partition can be efficiently computed.

The following theorem solves the problem with a close to optimal partition.

Theorem 2. There is a randomized polynomial time algorithm which given an n-vertex graph G, with probability at least 3/4, computes a partition S_{ε} such that $|E(S_{\varepsilon})| \geq |E(S^*)| - \varepsilon n^2$ where S^* is an optimal partition.