MATH 8500 Algorithmic Graph Theory, Spring 2017, OSU

Lecture 2: Multiway Cut

Instructor: Anastasios Sidiropoulos

Scribe: Austin Antoniou

1 An Approximation Algorithm for Multiway Cut

The Multiway Cut problem is similar in spirit to the Min Cut and s-t Min Cut problems, but turns out to be significantly more complex.

Input: Suppose G = (V, E) is a simple, undirected graph with edge weight $w : E \to \mathbb{R}^+$ and let $\overline{S = \{s_1, \ldots, s_k\}} \subseteq V$ be a subset of the vertices (we will refer to the elements of S as "terminals").

<u>Goal</u>: Find a subset $E' \subseteq E$ such that

(i) Each connected component of $G \setminus E'$ contains at most one terminal

(ii) The total weight $w(E') = \sum_{e \in E'} w(e)$ is minimized

Note that, for k = 2, this is simply the s - t Min Cut Problem.

Example 1. Consider the following graph with two terminals in which all edge weights are all 1:

The dashed edges above give an optimal multiway cut (notice, however, that this is not a minimum cut in the sense of the Min Cut Problem).

Now we consider another example with uniform edge weights and three terminals:

Again, the dashed edges give an optimal multiway cut in this example.

Theorem 1. If k = 3, the multiway cut problem is NP-hard.

We see now that, despite the apparent similarity of this problem to the s-t min cut problem, we should not expect to find an algorithm which yields a solution in polynomial time. We will instead seek a

fast algorithm which yields an "approximate" solution: a cut which in not necessarily minimal, but is "not too far" from minimal. Our procedure for accomplishing this is the following.

Isolating Cut Heuristic:

For $i = 1, \ldots, k$:

Construct the graph G_i as follows:

 G_i has vertex set $V(G_i) = V \cup \{t_i\}$ and edge set $E(G_i) = E \cup \{\{s_j, t_i\} : j \neq i\}$. For each $j \neq i$, extend the weight w by setting $w(\{s_i, t_i\}) = \infty$.

Compute the s_i - t_i min cut E_i in G_i .

End for.

By renumbering, assume that $w(E_1) \leq w(E_2) \leq \cdots \leq w(E_k)$.

Set
$$A = E_1 \cup \cdots \cup E_{k-1}$$
.

Return A.

Claim 1. The set A as above is a valid (not necessarily minimal) multiway cut in G.

Proof. For i < k and $j \neq i$, s_i and s_j are in separate components of $G \setminus E_i$, which contains as a subgraph $G \setminus A$.

For i = k and $j \neq i$, we have j < k, so s_k and s_j are in separate components of $G \setminus E_j$, which contains $G \setminus A$.

Thus the s_i all lie in distinct connected components of $G \setminus A$.

Now we must formalize and prove our claim that A is an "approximately minimal" multiway cut. Suppose E^* is *some* optimal solution and let V_1, \ldots, V_k be the connected components of $G \setminus E^*$, where $s_i \in V_i$.

For any $U \subseteq V$, let the boundary of U be given by $\partial(U) := \{\{u, v\} : u \in U, v \notin U\}$.

Claim 2. For all i = 1, ..., k, $w(E_i) \leq w(\partial(V_i))$.

Proof. This is true since $\partial(V_i)$ is an s_i - t_i cut but E_i is an s_i - t_i min cut, so E_i has smaller weight. \square

Claim 3. $2w(E^*) = w(\partial(V_1)) + \cdots + w(\partial(V_k))$

Proof. We can prove this by "double counting" the edges in E^* (with multiplicity given by the weight of each edge). Each edge of E^* appears in the boundary of exactly two connected components, so each edge is associated to two terms on the right hand side of the equation in the claim.

Theorem 2. The Isolating Cut Heuristic has approximation ratio $2 - \frac{2}{k}$; in other words,

$$\frac{w(A)}{w(E^*)} \le 2 - \frac{2}{k}$$

Proof.

$$w(A) \le \sum_{i=1}^{k-1} w(E_i) \le (1 - \frac{1}{k}) \sum_{i=1}^{k} w(E_i) \qquad \text{since } w(E_k) \ge \frac{1}{k} \sum_{i=1}^{k} w(E_i)$$
$$\le (1 - \frac{1}{k}) \sum_{i=1}^{k} w(\partial(V_i)) \qquad \text{by Claim 2}$$
$$= (1 - \frac{1}{k})(2w(E^*)) \qquad \text{by Claim 3}$$

2 A tight example for the Isolating Cut Heuristic

We have now seen that the Isolating Cut Heuristic yields a solution which has no more than twice the optimal cost. Our proof of this was not terribly complex, which raises the question: is it possible that this procedure can, in general, yield a solution better than what we have just described? The next example shows us that the answer to this question is "no"; the bound $w(A) \leq 2w(E^*)$ is tight.

Example 2. In the following graph

the optimal solution has total weight $w(E^*) = k$, given by choosing all of the edges with weight 1 (those that form the k-cycle).

However, the Isolating Cut Heuristic will cut each edge joining a terminal to the rest of the graph. At the end of the procedure, we will have removed k-1 edges of weight $2-\varepsilon$, so $w(A)=(k-1)(2-\varepsilon)$. Thus

$$\frac{w(A)}{w(E^*)} = \left(\frac{k}{k-1}\right)(2-\varepsilon)$$

which becomes arbitrarily close to 2 as k becomes large and as ε is chosen to be sufficiently small.