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1 An Approximation Algorithm for Multiway Cut

The Multiway Cut problem is similar in spirit to the Min Cut and s− t Min Cut problems, but turns
out to be significantly more complex.

Input: Suppose G = (V,E) is a simple, undirected graph with edge weight w : E → R+ and let
S = {s1, . . . , sk} ⊆ V be a subset of the vertices (we will refer to the elements of S as “terminals”).

Goal: Find a subset E′ ⊆ E such that

(i) Each connected component of G \ E′ contains at most one terminal

(ii) The total weight w(E′) =
∑

e∈E′ w(e) is minimized

Note that, for k = 2, this is simply the s− t Min Cut Problem.

Example 1. Consider the following graph with two terminals in which all edge weights are all 1:

•

• s1• s2•

•

The dashed edges above give an optimal multiway cut (notice, however, that this is not a minimum
cut in the sense of the Min Cut Problem).

Now we consider another example with uniform edge weights and three terminals:

• s2•

s1•

• •
s3

Again, the dashed edges give an optimal multiway cut in this example.

Theorem 1. If k = 3, the multiway cut problem is NP-hard.

We see now that, despite the apparent similarity of this problem to the s-t min cut problem, we should
not expect to find an algorithm which yields a solution in polynomial time. We will instead seek a
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fast algorithm which yields an “approximate” solution: a cut which in not necessarily minimal, but is
“not too far” from minimal. Our procedure for accomplishing this is the following.

Isolating Cut Heuristic:

For i = 1, . . . , k:

Construct the graph Gi as follows:

Gi has vertex set V (Gi) = V ∪ {ti} and edge set E(Gi) = E ∪ {{sj , ti} : j 6= i}.
For each j 6= i, extend the weight w by setting w({sj , ti}) =∞.

Compute the si-ti min cut Ei in Gi.

End for.

By renumbering, assume that w(E1) ≤ w(E2) ≤ · · · ≤ w(Ek).

Set A = E1 ∪ · · · ∪ Ek−1.

Return A.

Claim 1. The set A as above is a valid (not necessarily minimal) multiway cut in G.

Proof. For i < k and j 6= i, si and sj are in separate components of G \ Ei, which contains as a
subgraph G \A.

For i = k and j 6= i, we have j < k, so sk and sj are in separate components of G \Ej , which contains
G \A.

Thus the si all lie in distinct connected components of G \A.

Now we must formalize and prove our claim that A is an “approximately minimal” multiway cut.
Suppose E∗ is some optimal solution and let V1, . . . , Vk be the connected components of G\E∗, where
si ∈ Vi.

For any U ⊆ V , let the boundary of U be given by ∂(U) := {{u, v} : u ∈ U, v /∈ U}.

Claim 2. For all i = 1, . . . , k, w(Ei) ≤ w(∂(Vi)).

Proof. This is true since ∂(Vi) is an si-ti cut but Ei is an si-ti min cut, so Ei has smaller weight.

Claim 3. 2w(E∗) = w(∂(V1)) + · · ·+ w(∂(Vk))

Proof. We can prove this by “double counting” the edges in E∗ (with multiplicity given by the weight
of each edge). Each edge of E∗ appears in the boundary of exactly two connected components, so each
edge is associated to two terms on the right hand side of the equation in the claim.

Theorem 2. The Isolating Cut Heuristic has approximation ratio 2− 2
k ; in other words,

w(A)

w(E∗)
≤ 2− 2

k
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Proof.

w(A) ≤
k−1∑
i=1

w(Ei) ≤ (1− 1

k
)

k∑
i=1

w(Ei) since w(Ek) ≥ 1
k

∑k
i=1 w(Ei)

≤ (1− 1

k
)

k∑
i=1

w(∂(Vi)) by Claim 2

= (1− 1

k
)(2w(E∗)) by Claim 3

2 A tight example for the Isolating Cut Heuristic

We have now seen that the Isolating Cut Heuristic yields a solution which has no more than twice the
optimal cost. Our proof of this was not terribly complex, which raises the question: is it possible that
this procedure can, in general, yield a solution better than what we have just described? The next
example shows us that the answer to this question is “no”; the bound w(A) ≤ 2w(E∗) is tight.

Example 2. In the following graph

s2• s3•

• •

s1• • • s4•

• •

sk• s5•

2−ε

1

1

2−ε

2−ε

1

1 1

2−ε

2−ε2−ε

the optimal solution has total weight w(E∗) = k, given by choosing all of the edges with weight 1
(those that form the k-cycle).

However, the Isolating Cut Heuristic will cut each edge joining a terminal to the rest of the graph. At
the end of the procedure, we will have removed k − 1 edges of weight 2− ε, so w(A) = (k − 1)(2− ε).
Thus

w(A)

w(E∗)
=

(
k

k − 1

)
(2− ε)

which becomes arbitrarily close to 2 as k becomes large and as ε is chosen to be sufficiently small.
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