MATH 8500 Algorithmic Graph Theory, Spring 2017, OSU
Lecture 2: Multiway Cut

Instructor: Anastasios Sidiropoulos

Scribe: Austin Antoniou

1 An Approximation Algorithm for Multiway Cut

The Multiway Cut problem is similar in spirit to the Min Cut and s — ¢ Min Cut problems, but turns
out to be significantly more complex.

Input: Suppose G = (V, E) is a simple, undirected graph with edge weight w : F — R* and let
S ={s1,...,8k} CV be a subset of the vertices (we will refer to the elements of S as “terminals”).

Goal: Find a subset £/ C E such that

(i) Each connected component of G\ E’ contains at most one terminal

(ii) The total weight w(E') = 3" . w(e) is minimized

Note that, for &k = 2, this is simply the s — ¢t Min Cut Problem.

Ezxample 1. Consider the following graph with two terminals in which all edge weights are all 1:

The dashed edges above give an optimal multiway cut (notice, however, that this is not a minimum
cut in the sense of the Min Cut Problem).

Now we consider another example with uniform edge weights and three terminals:

Again, the dashed edges give an optimal multiway cut in this example.

Theorem 1. If k = 3, the multiway cut problem is NP-hard.

We see now that, despite the apparent similarity of this problem to the s-t min cut problem, we should
not expect to find an algorithm which yields a solution in polynomial time. We will instead seek a



fast algorithm which yields an “approximate” solution: a cut which in not necessarily minimal, but is
“not too far” from minimal. Our procedure for accomplishing this is the following.

Isolating Cut Heuristic:

Fori=1,... k:

Construct the graph G; as follows:
G has vertex set V(G;) = V U{t;} and edge set E(G;) = EU{{s;,t;} : j #i}.
For each j # i, extend the weight w by setting w({s;,t;}) = oco.

Compute the s;-t; min cut E; in G;.
End for.
By renumbering, assume that w(F1) < w(E3) < --- < w(Ey).
Set A=FE1U---UFE_;.
Return A.

Claim 1. The set A as above is a valid (not necessarily minimal) multiway cut in G.

Proof. For i < k and j # i, s; and s; are in separate components of G \ E;, which contains as a
subgraph G \ A.

For ¢ = k and j # 4, we have j < k, so s and s, are in separate components of G \ E;, which contains

G\ A.
Thus the s; all lie in distinct connected components of G \ A. O
Now we must formalize and prove our claim that A is an “approximately minimal” multiway cut.

Suppose E* is some optimal solution and let Vi, ..., V} be the connected components of G\ E*, where
s; € V.

For any U C V, let the boundary of U be given by 0(U) := {{u,v} :u € U,v ¢ U}.
Claim 2. Foralli=1,...,k, w(E;) < w(0(V;)).

Proof. This is true since 9(V;) is an s;-t; cut but F; is an s;-t; min cut, so E; has smaller weight. O
Claim 3. 2w(E*) = w(0(V1)) + -+ + w(0(V%))
Proof. We can prove this by “double counting” the edges in E* (with multiplicity given by the weight

of each edge). Each edge of E* appears in the boundary of exactly two connected components, so each
edge is associated to two terms on the right hand side of the equation in the claim. O

Theorem 2. The Isolating Cut Heuristic has approximation ratio 2 — %; in other words,

w(A)

<2-

NN



Proof.

k-1 k

w(A) < _ w(E;) < (1-— %) _ (Ey) since w(Fy) > %Zle w(E;)
=1 1 121

<(1- E) (0(vi)) by Claim 2
i=1

= (1- D) u(E) by Claim 3

O

2 A tight example for the Isolating Cut Heuristic

We have now seen that the Isolating Cut Heuristic yields a solution which has no more than twice the
optimal cost. Our proof of this was not terribly complex, which raises the question: is it possible that
this procedure can, in general, yield a solution better than what we have just described? The next
example shows us that the answer to this question is “no”; the bound w(A) < 2w(E™*) is tight.

Example 2. In the following graph

the optimal solution has total weight w(E*) = k, given by choosing all of the edges with weight 1
(those that form the k-cycle).

However, the Isolating Cut Heuristic will cut each edge joining a terminal to the rest of the graph. At
the end of the procedure, we will have removed k — 1 edges of weight 2 — ¢, so w(A) = (k —1)(2 —¢).

Thus o) .
w(EY) (k - 1) 2-¢)

which becomes arbitrarily close to 2 as k becomes large and as ¢ is chosen to be sufficiently small.




