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1 The Min-Cut problem

s-t Min-cut

Input: A graph G = (V, E), s,t € V, and a function w : £ — Rx,.

Question: Find £’ C E, such that s and ¢ lie in different connected components of
G \ F', minimizing w(E").

One way to solve s-t Min-cut problem is to use Max-flows. Another important partition-
ing problem is called Min-cut, and is defined as follows.

Min-cut

Input: A graph G = (V, E), and a function w : £ — Rx.

Question: Find E' C FE, such that G \ E’ has at least two connected components,

minimizing w(E").

Here is an application of algorithms for partitioning graphs. Suppose that you are given
an image that has an object and a background. The goal is to distinguish the object from
the background. One can think of the image as follows. You have a vertex for every pixel
of the image and there is an edge between every two neighboring pixels. The weight of each
edge (u,v) is the likelihood of u and v being in the same component (either the object or the
background). The goal is to find a set of edges with minimum weight, partitioning object
from the background.

Suppose that you are given an algorithm for the s-¢ Min-cut problem. One can use this
algorithm to solve the Min-cut problem as follows. Find the s-t Min-cut for all pairs of
vertices and return the minimum value. On the other hand, if you are given an algorithm
for Min-cut, it is not clear how to get an algorithm for s-t Min-cut. We are going to discuss
a randomized algorithm for Min-cut problem.

Algorithm 1 Karger’s Algorithm for Min-cut
Require: An undirected unweighted connected graph G.
Ensure: A Min-cut of G.

1 While there exists at least 3 vertices,

1.1 Pick an edge uniformly at random and contract it.

2 Return the remaining edges.

We need to define the contraction step. Given an edge e = (u,v) in a multigraph, we
contract e as follows. We delete all the edges between u and v, replace v and v with a new
vertex uv, and replace all the neighbor edges of u and v with edges incident to uv (See Figure

1).



Figure 1: Contracting an edge (u,v)

Note that this algorithm can be extended to the weighted case, but you have to take
edges with probability proportion to their weight.

Claim 1. In any graph G, the size of the Min-cut is at most the minimum degree.

Proof. Let v be the vertex of minimum degree. By deleting all the edges incident to v, we
get a cut for GG, and thus the size of the Min-cut should be at most the degree of v. O

Claim 2. If the size of Min-cut is k, then we have |E| > nk/2.

Proof. Since the size of Min-cut is k, every vertex must have degree at least k. Therefore,
we have |[E| =" _ deg(v)/2 >3 ., k/2 =nk/2. O

Now let C' be some Min-cut in GG. Let A be the event that the algorithm outputs C. For
every ¢ € {1,2,...,n — 2}, let A; be the event that in iteration ¢, the algorithm does not
pick an edge in C'.

Claim 3. We have Pr(A;) > (n —2)/n.

Proof. We have that Pr(4;) = 1 — Pr(=(A1)) =1 - |C|/|IE| > 1—=2/n = (n—2)/n, as
desired. O

Claim 4. For every i € {2,3,...,n — 2}, we have Pr(A;| NiZ} A;) > (n—i—1)/n—i+ 1.

Proof. Since we contract an edge in every iteration of the algorithm, at iteration ¢, there are

n—i+ 1 vertices left. Assuming m;-;]iAj, we have that the minimum cut in the current graph
is the same as the original graph. This is because we have not picked any of the edges in
C in the first ¢ — 1 iterations. Therefore, the min degree in the contracted graph is at least
|C| (counting parallel edges with multiplicities), and thus there are at least |C|/2.(n —i+ 1)

edges left. Therefore we have:
Pr(Ai] M2y Aj) = 1 = Pr(=(Ai M2 A;))
>1-2/(n—i+1)
=n—i—1)/n—i+1.



Theorem 1. The algorithm succeeds with probability at least 2/n(n — 1).
Proof. We have that Pr(A) = Pr(=(Ax| M/Z7 Aj)). Pr(=(As| M7= A;)). ... Pr(A;). Therefore

we have
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Claim 5. If we run the algorithm k times, at least one execution succeeds with probability
at least 1 — (n(n2—1)))k'

Claim 6. For every x > 1, we have that (1 —1)* < 1/e.

Now let k = "("271) -In(n). Therefore we have that the failure probability is at most

(n(n2 1)))’€ < (1)) < 1/n. Therefore by running the algorithm k = @ In(n) times, the

failure probability will be less than 1/n. If we run the algorithm & = 10 - "(" Y . In(n), the
failure probability will be less than 1/(n'Y).

2 The k-Cut problem

k-Cut

Input: A connected unweighted graph G = (V, E), and an integer k.

Question: Find £’ C FE, such that G \ E’ has at least k connected components,
minimizing |E'|.

A similar algorithm applies for this problem.

Algorithm 2 Karger’s Algorithm for k-cut

Require: An undirected unweighted connected graph G, and an integer k.
Ensure: A k-cut of G.
1 While there exists at least k + 1 vertices,

1.1 Pick edge uniformly at random and contract it.

2 Return the remaining edges.

Theorem 2. The success probability of Karger’s algorithm for k-Cut is at least n—ék

Corollary 1. For any fixed k > 2, k-Cut can be solved in randomized polynomial time.
i.e. there exists an algorithm with running time n®®) (which is polynomial for fized k), that
succeeds with high probability.

Theorem 3. k-Cut is NP-hard.



