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Can we embed the n-cycle in a random tree?
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Random embeddings

Let (X, p) be a metric space.

Let M be a family of metric spaces.

A random embedding of (X, p) into M is a distribution F over
pairs (f, M), where

» M= (X',p') is a metric space in M

» X=X

» For any x,y € X, we have Pr[p/(f(x),f(y)) > p(x,y)] = 1.
» For any x,y € X, we have E[p'(f(x), f(y))] < a-p(x,y).

« : distortion



Examples

Random embedding of the n x n grid into a distribution over trees?



Random embeddings into trees

Theorem (Fakcharoenphol, Rao, Talwar '04)

Any n-point metric space admits a random embedding into a
distribution over trees, with distortion O(log n).
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From random partitions to random embeddings

Let (X, p) be a metric space.
Assume that for any x,y € X, we have

1 <p(x,y) <A

For any i € {0,...,log A}, let D; be a (3,2")-Lipschitz partition of
(X, p), for some = O(log n).

For any i, sample a random partition P; € D;.
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Building a hierarchical partition

Initially, all points are in the same “cluster”.
Consider all i from log A to 0.
For every current cluster C, refine C by intersecting it with P.

We obtain a family of partitions Cioga, .- ., Co, such that
» Cioga contains a single cluster with all the points.
» C; is a refinement of Ciy1.

» (p contains a singleton cluster for every point.
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From hierarchical partitions to trees

Given Ciga, .-, Co, we build a tree T as follows.
The root of T is the single cluster in Ciog a-
The height-i nodes in T are the clusters in C;.

For any i > 0, every cluster A in C; has as its children all the
clusters A" in Ciy1, with A’ C A.

The edges in T between a cluster A in C;, and its children, have
length 2'.



The embedding

We map every point x € X to the leaf of T corresponding to the
singleton cluster in Cp containing x.
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iFérD,-[Pi(X) 7é Pi(y)] < O(Iog n) . IO(Xv)/)

P 2f



Distortion analysis

Let x,y € X.

The probability that x and y are separated in P; is at most

p(x,y)
Pr [Pi(x) # Pi(y)] < O(logn) - %

P

Let & be the random event that / is the maximum integer such
that P,'(X) 75 P,-(y).



Distortion analysis

Let x,y € X.

The probability that x and y are separated in P; is at most

p(x,y)
2i

P;FérD,-[Pi(X) # Pi(y)] < O(log n) -

Let & be the random event that / is the maximum integer such
that P,'(X) 75 P,-(y).

Conditioned on &;, we have dr(f(x),f(y)) = O(2).



Distortion analysis (cont.)

We have

log A

E[dr(f Z Pr[&]- O(2

Iog A

< Z O(log n) - ) O(zi)
- O(Iogn ~log A - p(x,y))

Therefore, the distortion is O(log n - log A).
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Applications of random embeddings

Let V be aset, T C RKXV a set of non-negative vectors

corresponding all feasible solutions for a minimization problem, and
VxV

ceR{™V.

In the linear minimization problem (Z, c) we are given a graph G

with vertex set V, and want to find some s € Z, minimizing

Z Cuy - Suy - d(u,v)

{u,v}eVxVv

Captures MST, TSP, Facility-Location, k-Server, Bi-Chromatic
Matching, etc.



Applications (cont.)

Theorem

For any a linear minimization problem T1, if there exists a
polynomial-time a-approximation algorithm for I1 on trees, then
there exists a randomized polynomial-time

O(« - log n)-approximation algorithm for 1 on arbitrary graphs.



Applications (cont.)

Theorem

For any a linear minimization problem T1, if there exists a
polynomial-time a-approximation algorithm for I1 on trees, then
there exists a randomized polynomial-time

O(« - log n)-approximation algorithm for I on arbitrary graphs.

Proof.

Sampling a random embedding into a tree T with distortion
O(log n), solve M on T, and finally pull the solution back to the
original graph G. The guarantee on the resulting approximation
factor follows by the definition of distortion, and linearity of
expectation.



