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Geometry in algorithm design
» Computational geometry. Computing properties of
geometric objects.
» Point sets, polygons, surfaces, terrains, polyhedra, etc.
» Diameter, volume, traversals, motion planning, etc.
» Geometric interpretation of data.

» Treating input data set as a geometric object / space.
» Optimization / mathematical programming / geometric
relaxations.
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Computational geometry

Examples of problems

> Given a set of points P in some ambient space &
» Compute efficiently a property of P
> Diameter
» Closest Pair
» Traveling Salesperson Problem (TSP)
» Minimum Spanning Tree (MST)
» The difficulty/complexity of the problem depends on S.

» Topology
» Dimension



Geometric interpretation of data

» Often, data consists of a collection of records, each with
multiple attributes.



Geometric interpretation of data

» Often, data consists of a collection of records, each with
multiple attributes.

» Computer vision (e.g. face recognition)




Geometric interpretation of data

» Often, data consists of a collection of records, each with
multiple attributes.

» Computer vision (e.g. face recognition)
» Computational biology (e.g. DNA sequences)




Geometric interpretation of data

» Often, data consists of a collection of records, each with
multiple attributes.
» Computer vision (e.g. face recognition)
» Computational biology (e.g. DNA sequences)
» pandora.com (Music Genome Project: 400 attributes per song)




Geometric interpretation of data

» Often, data consists of a collection of records, each with
multiple attributes.

Computer vision (e.g. face recognition)

Computational biology (e.g. DNA sequences)

pandora.com (Music Genome Project: 400 attributes per song)

Engineering, Medicine, Psychology, Finance, ...

vV vy vy
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What do we want to compute?

Interesting problems on geometric data sets.

» Similarity search: Given a “query” record, find the most
similar one in the data set, e.g.:

Find the most similar face.

Fingerprint recognition.

On-line dating.

Personalized medicine.

vV vy vy

v

Clustering: Partition the set of records into similar sets, e.g.:
» Partition songs into music genres.

v

Compressed representations:

» Compute succinct approximate representation of the data.
» Dimensionality reduction.

Sketching: Summarization
» Finding a (very small) subset of representative records.

v



Dramatis personae

Most data comes in two possible forms:
» Metric spaces
» Graphs
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Graphs as metric spaces

Let G = (V, E) be a graph.
We will often endow G with non-negative edge lengths

length : E — R>g

Then, G gives rise to a shortest-path metric dg, where for any
uvev,
de(u,v) = min length(P),

P:path from u to v

where
k—1

length(vy, ..., vk) = Z length({vi, vit1}).
i=1

Examples of shortest-path metrics?
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What is the right norm?

» The input might not always be Euclidean.
» E.g. edit-distance:

» Metric space (X, p).
» X = {0,1}9, for some d > 0.
» p(x,y) = min# of insertions/deletions to obtain y from x.

» Do we need completely different methods for each space?
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low distortion
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Metric embeddings

Metric spaces M = (X, p), M' = (X', p').
A metric embedding is a mapping f : X — X'.
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Can we simplify a space S, while preserving its geometry?

v

Can we embed S into a simpler space S’, with low distortion?

v

v

Is the embedding efficiently computable?

v

If this is possible, then we can obtain faster algorithms!
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Simplification via embeddings

Question: Can we embed a complicated space into some simpler
space, with small distortion?
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All spaces are approximately Euclidean

Theorem (Bourgain '85)

Any n-point metric space admits an embedding into Euclidean
space with distortion O(log n).

> l.e. every point x is mapped to some vector in f(x) € R, for
some finite d.
The new distance is ||f(x) — f(y)||2-

Corollary: Every n-point metric space can be stored using
linear space, with error/distortion O(log n).

v

v

v

This embedding is efficiently computable.

v

Problems in general metrics can be reduced to Euclidean
space.
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Embedding metric space into graphs

Any n-point metric space can be embedded into a n-vertex graph,
with distortion 1.

Storing a graph on n vertices requires O(n?) space.
Can we embed into sparse graphs?
Theorem ([Peleg and Schaffer])

For any ¢ > 1, any n-point metric space admits an embedding
with distortion c into a graph with O(n**1/¢) edges.

Corollary

Any n-point metric space admits an embedding with distortion
O(log n) into a graph with O(n) edges.
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Constructing a sparse spanner

Let G = (V, E), and suppose |E| = (3).

We will embed G into some graph G’ = (V, E’) with |E'| <« |E],
with distortion at most some ¢ > 1.

Observation: We may assume that for any {u,v} € E, we have

length({u, v}) = dg(u, v)

(if not, setting length({u, v}) = dg(u, v) does not change the
shortest-path metric).

Sort E in non-decreasing length, i.e.
length(e1) < length(ex) < ... < Iength(e‘E‘).

Initialize E/ = ().
For i =1 to |E]|
if G’ U e; does not contain a cycle with at most ¢ edges:
add e; to E’
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Analysis

Claim: G’ does not contain a cycle with at most ¢ edges.
Why?

In other words, G’ has girth at least ¢ + 1.



Lemma
The embedding of G into G' has distortion at most c.

Proof.

Let {u,v} € E. If {u,v} € E, then dg(u,v) = dg/(u, v).
Otherwise, by construction, there exists a path with at most ¢
edges between u and v in G’ (since otherwise we would have
added {u, v} to G’). All these edges are considered before {u, v},
and thus their length is at most length({u, v}). If follows that
de/(u,v) < c-dg(u,v).

It remains to consider the case {u,v} ¢ E. Let P = vy, vo,..., v
be a shortest-path in G between v and v. We have

k-1 k-1
de/(u,v) < Z dg/ (i, viy1) < Z c - length(v;, vit1)
i—1 i—1
k-1

= c-dg(vi,vit1) = c- dg(u,v)

i=1
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Lemma
Any graph with n vertices, and girth at least ¢ 4+ 1, contains at
most n + n'T1/1¢/2] edges.

Corollary
|E'| = O(n*t1/1e/2]),
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The girth /density bound

Lemma
Any graph G’ with n vertices, and girth at least ¢ + 1, contains at
most n+ ntt1/1¢/2] edges.

Proof.
Assume ¢ = 2k.
Let G' = (V,E’). Suppose |E'| = m.
The average degree is d = 2m/n.
There is a subgraph H C G’, with minimum degree at least
§ =d/2. Why?
» Removing a vertex of degree < d/2 does not decrease the
average degree.
Let vy be a vertex in H. The k-neighborhood of vg is a tree. Why?
The number of vertices in this tree is at most

14+6+6(6—1)+...+60 - 1)1 > (5 1)k

So, n> (6 — 1)k, and m = 6n/2 = 6n < n'tV/k 4 . O



