5339 - Algorithms design under a geometric lens
Spring 2014, CSE, OSU
Lecture 1: Introduction

Instructor: Anastasios Sidiropoulos

January 8, 2014

Geometry & algorithms

Geometry in algorithm design

» Computational geometry. Computing properties of
geometric objects.

Geometry & algorithms

Geometry in algorithm design

» Computational geometry. Computing properties of
geometric objects.

» Point sets, polygons, surfaces, terrains, polyhedra, etc.

Geometry & algorithms

Geometry in algorithm design

» Computational geometry. Computing properties of
geometric objects.

» Point sets, polygons, surfaces, terrains, polyhedra, etc.
» Diameter, volume, traversals, motion planning, etc.

» Geometric interpretation of data.
» Treating input data set as a geometric object / space.

Geometry & algorithms

Geometry in algorithm design
» Computational geometry. Computing properties of
geometric objects.
» Point sets, polygons, surfaces, terrains, polyhedra, etc.
» Diameter, volume, traversals, motion planning, etc.
» Geometric interpretation of data.

» Treating input data set as a geometric object / space.
» Optimization / mathematical programming / geometric
relaxations.

Computational geometry

Examples of problems

> Given a set of points P in some ambient space &

Computational geometry

Examples of problems

> Given a set of points P in some ambient space &
» Compute efficiently a property of P

Diameter

Closest Pair

Traveling Salesperson Problem (TSP)
Minimum Spanning Tree (MST)

vV vy vy

Computational geometry

Examples of problems

> Given a set of points P in some ambient space &
» Compute efficiently a property of P
> Diameter
» Closest Pair
» Traveling Salesperson Problem (TSP)
» Minimum Spanning Tree (MST)
» The difficulty/complexity of the problem depends on S.

» Topology
» Dimension

Geometric interpretation of data

» Often, data consists of a collection of records, each with
multiple attributes.

Geometric interpretation of data

» Often, data consists of a collection of records, each with
multiple attributes.

» Computer vision (e.g. face recognition)

Geometric interpretation of data

» Often, data consists of a collection of records, each with
multiple attributes.

» Computer vision (e.g. face recognition)
» Computational biology (e.g. DNA sequences)

Geometric interpretation of data

» Often, data consists of a collection of records, each with
multiple attributes.
» Computer vision (e.g. face recognition)
» Computational biology (e.g. DNA sequences)
» pandora.com (Music Genome Project: 400 attributes per song)

Geometric interpretation of data

» Often, data consists of a collection of records, each with
multiple attributes.

Computer vision (e.g. face recognition)

Computational biology (e.g. DNA sequences)

pandora.com (Music Genome Project: 400 attributes per song)

Engineering, Medicine, Psychology, Finance, ...

vV vy vy

What do we want to compute?

Interesting problems on geometric data sets.

What do we want to compute?

Interesting problems on geometric data sets.

» Similarity search: Given a “query” record, find the most
similar one in the data set, e.g.:

Find the most similar face.

Fingerprint recognition.

On-line dating.

Personalized medicine.

vV vy vy

What do we want to compute?

Interesting problems on geometric data sets.

» Similarity search: Given a “query” record, find the most
similar one in the data set, e.g.:

Find the most similar face.

Fingerprint recognition.

On-line dating.

Personalized medicine.

vV vy vy

» Clustering: Partition the set of records into similar sets, e.g.:
» Partition songs into music genres.

What do we want to compute?

Interesting problems on geometric data sets.

» Similarity search: Given a “query” record, find the most
similar one in the data set, e.g.:

Find the most similar face.

Fingerprint recognition.

On-line dating.

Personalized medicine.

vV vy vy

» Clustering: Partition the set of records into similar sets, e.g.:
» Partition songs into music genres.
» Compressed representations:

» Compute succinct approximate representation of the data.
» Dimensionality reduction.

What do we want to compute?

Interesting problems on geometric data sets.

» Similarity search: Given a “query” record, find the most
similar one in the data set, e.g.:

Find the most similar face.

Fingerprint recognition.

On-line dating.

Personalized medicine.

vV vy vy

» Clustering: Partition the set of records into similar sets, e.g.:
» Partition songs into music genres.
» Compressed representations:

» Compute succinct approximate representation of the data.
» Dimensionality reduction.

» Sketching: Summarization
» Finding a (very small) subset of representative records.

What do we want to compute?

Interesting problems on geometric data sets.

» Similarity search: Given a “query” record, find the most
similar one in the data set, e.g.:

Find the most similar face.

Fingerprint recognition.

On-line dating.

Personalized medicine.

vV vy vy

v

Clustering: Partition the set of records into similar sets, e.g.:
» Partition songs into music genres.

v

Compressed representations:

» Compute succinct approximate representation of the data.
» Dimensionality reduction.

Sketching: Summarization
» Finding a (very small) subset of representative records.

v

Dramatis personae

Most data comes in two possible forms:
» Metric spaces
» Graphs

Metric spaces

A metric space is a pair (X, p), where:
» X is the set of points.
> p: X x X = R>q satisfies:
» For all x,y € X, we have p(x,y) =0 if and only if x = y.

» For all x,y € X, we have p(x,y) = p(y, x).
» Forall x,y,z € X, we have p(x,y) < p(x,2) + p(z,y).

Metric spaces

A metric space is a pair (X, p), where:
» X is the set of points.
> p: X x X = R>q satisfies:
» For all x,y € X, we have p(x,y) =0 if and only if x = y.

» For all x,y € X, we have p(x,y) = p(y, x).
» Forall x,y,z € X, we have p(x,y) < p(x,2) + p(z,y).

Examples of metric spaces?

Graphs as metric spaces

Let G = (V, E) be a graph.
We will often endow G with non-negative edge lengths

length : E — R>g

Graphs as metric spaces

Let G = (V, E) be a graph.
We will often endow G with non-negative edge lengths

length : E — R>g

Then, G gives rise to a shortest-path metric dg, where for any
uvev,
de(u,v) = min length(P),

P:path from u to v

where
k—1

length(vy, ..., vk) = Z length({vi, vit1}).
i=1

Graphs as metric spaces

Let G = (V, E) be a graph.
We will often endow G with non-negative edge lengths

length : E — R>g

Then, G gives rise to a shortest-path metric dg, where for any
uvev,
de(u,v) = min length(P),

P:path from u to v

where
k—1

length(vy, ..., vk) = Z length({vi, vit1}).
i=1

Examples of shortest-path metrics?

Geometric interpretation
One possible interpretation (but not the only onel!):

» Suppose each record has d numerical attributes.

Geometric interpretation
One possible interpretation (but not the only one!):
» Suppose each record has d numerical attributes.

» Treat each record as a point in RY.

Geometric interpretation
One possible interpretation (but not the only one!):
» Suppose each record has d numerical attributes.
» Treat each record as a point in RY.

» /(,-distance corresponds to dissimilarity.

Geometric interpretation
One possible interpretation (but not the only one!):
» Suppose each record has d numerical attributes.
» Treat each record as a point in RY.

» /(,-distance corresponds to dissimilarity.

» What is the right norm?

What is the right norm?

» The input might not always be Euclidean.

What is the right norm?

» The input might not always be Euclidean.
» E.g. edit-distance:

» Metric space (X, p).
» X = {0,1}9, for some d > 0.
» p(x,y) = min# of insertions/deletions to obtain y from x.

What is the right norm?

» The input might not always be Euclidean.
» E.g. edit-distance:

» Metric space (X, p).
» X = {0,1}9, for some d > 0.
» p(x,y) = min# of insertions/deletions to obtain y from x.

» Do we need completely different methods for each space?

Metric embeddings
Metric spaces M = (X, p), M' = (X, p').
A metric embedding is a mapping f : X — X',
The distortion of f is a parameter that quantifies how good f is.

Metric embeddings
Metric spaces M = (X, p), M' = (X', p').
A metric embedding is a mapping f : X — X'.
The distortion of f is a parameter that quantifies how good f is.

low distortion

Metric embeddings
Metric spaces M = (X, p), M' = (X', p').
A metric embedding is a mapping f : X — X'.
The distortion of f is a parameter that quantifies how good f is.

low distortion

high distortion
_—

Metric embeddings

Metric spaces M = (X, p), M' = (X', p').
A metric embedding is a mapping f : X — X'.

S~ A ax PO EONN (XY
d'St°“'°"(”‘<x,yex o(x.y)) <xcyfex;>'(f(x'),f(y')>>

Metric embeddings & algorithm design

» Can we simplify a space S, while preserving its geometry?

Metric embeddings & algorithm design

» Can we simplify a space S, while preserving its geometry?
» Can we embed S into a simpler space S’, with low distortion?

Metric embeddings & algorithm design

» Can we simplify a space S, while preserving its geometry?
» Can we embed S into a simpler space S’, with low distortion?

> Is the embedding efficiently computable?

Metric embeddings & algorithm design

Can we simplify a space S, while preserving its geometry?

v

Can we embed S into a simpler space S’, with low distortion?

v

v

Is the embedding efficiently computable?

v

If this is possible, then we can obtain faster algorithms!

Simplification via embeddings

Simplification via embeddings

Simplification via embeddings

Question: Can we embed a complicated space into some simpler
space, with small distortion?

All spaces are approximately Euclidean

Theorem (Bourgain '85)
Any n-point metric space admits an embedding into Euclidean
space with distortion O(log n).

All spaces are approximately Euclidean

Theorem (Bourgain '85)
Any n-point metric space admits an embedding into Euclidean
space with distortion O(log n).

> l.e. every point x is mapped to some vector in f(x) € R, for
some finite d.

All spaces are approximately Euclidean

Theorem (Bourgain '85)
Any n-point metric space admits an embedding into Euclidean
space with distortion O(log n).

> l.e. every point x is mapped to some vector in f(x) € R, for
some finite d.

» The new distance is ||f(x) — f(y)]2-

All spaces are approximately Euclidean

Theorem (Bourgain '85)

Any n-point metric space admits an embedding into Euclidean
space with distortion O(log n).

> l.e. every point x is mapped to some vector in f(x) € R, for
some finite d.
» The new distance is ||f(x) — f(y)]|2-

» Corollary: Every n-point metric space can be stored using
linear space, with error/distortion O(log n).

All spaces are approximately Euclidean

Theorem (Bourgain '85)
Any n-point metric space admits an embedding into Euclidean
space with distortion O(log n).

> l.e. every point x is mapped to some vector in f(x) € R, for
some finite d.

» The new distance is ||f(x) — f(y)]2-

» Corollary: Every n-point metric space can be stored using
linear space, with error/distortion O(log n).

» This embedding is efficiently computable.

All spaces are approximately Euclidean

Theorem (Bourgain '85)

Any n-point metric space admits an embedding into Euclidean
space with distortion O(log n).

> l.e. every point x is mapped to some vector in f(x) € R, for
some finite d.
The new distance is ||f(x) — f(y)||2-

Corollary: Every n-point metric space can be stored using
linear space, with error/distortion O(log n).

v

v

v

This embedding is efficiently computable.

v

Problems in general metrics can be reduced to Euclidean
space.

Embedding metric space into graphs

Any n-point metric space can be embedded into a n-vertex graph,
with distortion 1.

Embedding metric space into graphs

Any n-point metric space can be embedded into a n-vertex graph,
with distortion 1.

Storing a graph on n vertices requires O(n?) space.

Embedding metric space into graphs

Any n-point metric space can be embedded into a n-vertex graph,
with distortion 1.

Storing a graph on n vertices requires O(n?) space.
Can we embed into sparse graphs?
Theorem ([Peleg and Schaffer])

For any ¢ > 1, any n-point metric space admits an embedding
with distortion c into a graph with O(n**1/¢) edges.

Corollary

Any n-point metric space admits an embedding with distortion
O(log n) into a graph with O(n) edges.

Constructing a sparse spanner
Let G = (V, E), and suppose |E| = (3).

Constructing a sparse spanner

Let G = (V, E), and suppose |E| = (3).
We will embed G into some graph G’ = (V, E’) with |E'| <« |E],
with distortion at most some ¢ > 1.

Constructing a sparse spanner

Let G = (V, E), and suppose |E| = (3).

We will embed G into some graph G’ = (V, E’) with |E'| <« |E],
with distortion at most some ¢ > 1.

Observation: We may assume that for any {u,v} € E, we have

length({u, v}) = dg(u, v)

(if not, setting length({u, v}) = dg(u, v) does not change the
shortest-path metric).

Constructing a sparse spanner

Let G = (V, E), and suppose |E| = (3).

We will embed G into some graph G’ = (V, E’) with |E'| <« |E],
with distortion at most some ¢ > 1.

Observation: We may assume that for any {u,v} € E, we have

length({u, v}) = dg(u, v)

(if not, setting length({u, v}) = dg(u, v) does not change the
shortest-path metric).

Sort E in non-decreasing length, i.e.

length(e1) < length(ez) < ... < length(e/g)).

Constructing a sparse spanner

Let G = (V, E), and suppose |E| = (3).

We will embed G into some graph G’ = (V, E’) with |E'| <« |E],
with distortion at most some ¢ > 1.

Observation: We may assume that for any {u,v} € E, we have

length({u, v}) = dg(u, v)

(if not, setting length({u, v}) = dg(u, v) does not change the
shortest-path metric).

Sort E in non-decreasing length, i.e.
length(e1) < length(ex) < ... < Iength(e‘E‘).

Initialize E' = ().

Constructing a sparse spanner

Let G = (V, E), and suppose |E| = (3).

We will embed G into some graph G’ = (V, E’) with |E'| <« |E],
with distortion at most some ¢ > 1.

Observation: We may assume that for any {u,v} € E, we have

length({u, v}) = dg(u, v)

(if not, setting length({u, v}) = dg(u, v) does not change the
shortest-path metric).

Sort E in non-decreasing length, i.e.
length(e1) < length(ex) < ... < Iength(e‘E‘).

Initialize E/ = ().
For i =1 to |E]|
if G’ U e; does not contain a cycle with at most ¢ edges:
add e; to E’

Analysis

Claim: G’ does not contain a cycle with at most ¢ edges.

Analysis

Claim: G’ does not contain a cycle with at most ¢ edges.

Why?

Analysis

Claim: G’ does not contain a cycle with at most ¢ edges.
Why?

In other words, G’ has girth at least ¢ + 1.

Lemma
The embedding of G into G' has distortion at most c.

Proof.

Let {u,v} € E. If {u,v} € E, then dg(u,v) = dg/(u, v).
Otherwise, by construction, there exists a path with at most ¢
edges between u and v in G’ (since otherwise we would have
added {u, v} to G’). All these edges are considered before {u, v},
and thus their length is at most length({u, v}). If follows that
de/(u,v) < c-dg(u,v).

It remains to consider the case {u,v} ¢ E. Let P = vy, vo,..., v
be a shortest-path in G between v and v. We have

k-1 k-1
de/(u,v) < Z dg/ (i, viy1) < Z c - length(v;, vit1)
i—1 i—1
k-1

= c-dg(vi,vit1) = c- dg(u,v)

i=1

Lemma
Any graph with n vertices, and girth at least ¢ 4+ 1, contains at
most n + n'T1/1¢/2] edges.

Lemma
Any graph with n vertices, and girth at least ¢ 4+ 1, contains at
most n + n'T1/1¢/2] edges.

Corollary
|E'| = O(n*t1/1e/2]),

The girth /density bound

Lemma
Any graph G’ with n vertices, and girth at least c + 1, contains at

most n+ ntt1/1¢/2] edges.

Proof.

Assume ¢ = 2k.

The girth /density bound

Lemma
Any graph G’ with n vertices, and girth at least ¢ + 1, contains at
most n+ ntt1/1¢/2] edges.

Proof.

Assume ¢ = 2k.

Let G’ = (V,E’). Suppose |[E'| = m.

The average degree is d = 2m/n.

There is a subgraph H C G’, with minimum degree at least
§ =d/2. Why?

The girth /density bound

Lemma
Any graph G’ with n vertices, and girth at least ¢ + 1, contains at
most n+ ntt1/1¢/2] edges.

Proof.
Assume ¢ = 2k.
Let G' = (V,E’). Suppose |E'| = m.
The average degree is d = 2m/n.
There is a subgraph H C G’, with minimum degree at least
§ =d/2. Why?
» Removing a vertex of degree < d/2 does not decrease the
average degree.

The girth /density bound

Lemma
Any graph G’ with n vertices, and girth at least ¢ + 1, contains at
most n+ ntt1/1¢/2] edges.

Proof.
Assume ¢ = 2k.
Let G' = (V,E’). Suppose |E'| = m.
The average degree is d = 2m/n.
There is a subgraph H C G’, with minimum degree at least
§ =d/2. Why?
» Removing a vertex of degree < d/2 does not decrease the
average degree.

Let vy be a vertex in H. The k-neighborhood of vg is a tree. Why?

The girth /density bound

Lemma
Any graph G’ with n vertices, and girth at least ¢ + 1, contains at
most n+ ntt1/1¢/2] edges.

Proof.
Assume ¢ = 2k.
Let G' = (V,E’). Suppose |E'| = m.
The average degree is d = 2m/n.
There is a subgraph H C G’, with minimum degree at least
§ =d/2. Why?
» Removing a vertex of degree < d/2 does not decrease the
average degree.
Let vy be a vertex in H. The k-neighborhood of vg is a tree. Why?
The number of vertices in this tree is at most

14+6+6(6—1)+...+60 - 1)1 > (5 1)k

The girth /density bound

Lemma
Any graph G’ with n vertices, and girth at least ¢ + 1, contains at
most n+ ntt1/1¢/2] edges.

Proof.
Assume ¢ = 2k.
Let G' = (V,E’). Suppose |E'| = m.
The average degree is d = 2m/n.
There is a subgraph H C G’, with minimum degree at least
§ =d/2. Why?
» Removing a vertex of degree < d/2 does not decrease the
average degree.
Let vy be a vertex in H. The k-neighborhood of vg is a tree. Why?
The number of vertices in this tree is at most

14+6+6(6—1)+...+60 - 1)1 > (5 1)k

So, n> (6 — 1)k, and m = 6n/2 = 6n < n'tV/k 4 . O

