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Geometry & algorithms

Geometry in algorithm design
I Computational geometry. Computing properties of

geometric objects.

I Point sets, polygons, surfaces, terrains, polyhedra, etc.
I Diameter, volume, traversals, motion planning, etc.

I Geometric interpretation of data.
I Treating input data set as a geometric object / space.
I Optimization / mathematical programming / geometric

relaxations.
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Computational geometry

Examples of problems

I Given a set of points P in some ambient space S

I Compute efficiently a property of P
I Diameter
I Closest Pair
I Traveling Salesperson Problem (TSP)
I Minimum Spanning Tree (MST)

I The difficulty/complexity of the problem depends on S.
I Topology
I Dimension
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Geometric interpretation of data

I Often, data consists of a collection of records, each with
multiple attributes.

I Computer vision (e.g. face recognition)
I Computational biology (e.g. DNA sequences)
I pandora.com (Music Genome Project: 400 attributes per song)
I Engineering, Medicine, Psychology, Finance, . . .
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What do we want to compute?

Interesting problems on geometric data sets.

I Similarity search: Given a “query” record, find the most
similar one in the data set, e.g.:

I Find the most similar face.
I Fingerprint recognition.
I On-line dating.
I Personalized medicine.

I Clustering: Partition the set of records into similar sets, e.g.:
I Partition songs into music genres.

I Compressed representations:
I Compute succinct approximate representation of the data.
I Dimensionality reduction.

I Sketching: Summarization
I Finding a (very small) subset of representative records.

I . . .
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Dramatis personae

Most data comes in two possible forms:

I Metric spaces

I Graphs



Metric spaces

A metric space is a pair (X , ρ), where:

I X is the set of points.
I ρ : X × X → R≥0 satisfies:

I For all x , y ∈ X , we have ρ(x , y) = 0 if and only if x = y .
I For all x , y ∈ X , we have ρ(x , y) = ρ(y , x).
I For all x , y , z ∈ X , we have ρ(x , y) ≤ ρ(x , z) + ρ(z , y).

Examples of metric spaces?
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Graphs as metric spaces

Let G = (V ,E ) be a graph.
We will often endow G with non-negative edge lengths

length : E → R≥0

Then, G gives rise to a shortest-path metric dG , where for any
u, v ∈ V ,

dG (u, v) = min
P:path from u to v

length(P),

where

length(v1, . . . , vk) =
k−1∑
i=1

length({vi , vi+1}).

Examples of shortest-path metrics?
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Geometric interpretation
One possible interpretation (but not the only one!):

I Suppose each record has d numerical attributes.

I Treat each record as a point in Rd .

I `p-distance corresponds to dissimilarity.

I What is the right norm?
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What is the right norm?

I The input might not always be Euclidean.

I E.g. edit-distance:
I Metric space (X , ρ).
I X = {0, 1}d , for some d > 0.
I ρ(x , y) = min # of insertions/deletions to obtain y from x .

I Do we need completely different methods for each space?
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Metric embeddings
Metric spaces M = (X , ρ), M ′ = (X ′, ρ′).
A metric embedding is a mapping f : X → X ′.
The distortion of f is a parameter that quantifies how good f is.

low distortion−−−−−−−−→

high distortion−−−−−−−−→
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Metric embeddings

Metric spaces M = (X , ρ), M ′ = (X ′, ρ′).
A metric embedding is a mapping f : X → X ′.

distortion(f ) =

(
max
x ,y∈X

ρ′(f (x), f (y))

ρ(x , y)

)
·
(

max
x ′,y ′∈X

ρ(x ′, y ′)

ρ′(f (x ′), f (y ′))

)



Metric embeddings & algorithm design

I Can we simplify a space S, while preserving its geometry?

I Can we embed S into a simpler space S ′, with low distortion?

I Is the embedding efficiently computable?

I If this is possible, then we can obtain faster algorithms!
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?←−

Question: Can we embed a complicated space into some simpler
space, with small distortion?
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All spaces are approximately Euclidean

Theorem (Bourgain ’85)

Any n-point metric space admits an embedding into Euclidean
space with distortion O(log n).

I I.e. every point x is mapped to some vector in f (x) ∈ Rd , for
some finite d .

I The new distance is ‖f (x)− f (y)‖2.

I Corollary: Every n-point metric space can be stored using
linear space, with error/distortion O(log n).

I This embedding is efficiently computable.

I Problems in general metrics can be reduced to Euclidean
space.
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Embedding metric space into graphs

Any n-point metric space can be embedded into a n-vertex graph,
with distortion 1.

Storing a graph on n vertices requires O(n2) space.
Can we embed into sparse graphs?

Theorem ([Peleg and Schäffer])

For any c ≥ 1, any n-point metric space admits an embedding
with distortion c into a graph with O(n1+1/c) edges.

Corollary

Any n-point metric space admits an embedding with distortion
O(log n) into a graph with O(n) edges.
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Constructing a sparse spanner

Let G = (V ,E ), and suppose |E | =
(n
2

)
.

We will embed G into some graph G ′ = (V ,E ′) with |E ′| � |E |,
with distortion at most some c > 1.
Observation: We may assume that for any {u, v} ∈ E , we have

length({u, v}) = dG (u, v)

(if not, setting length({u, v}) = dG (u, v) does not change the
shortest-path metric).

Sort E in non-decreasing length, i.e.

length(e1) ≤ length(e2) ≤ . . . ≤ length(e|E |).

Initialize E ′ = ∅.
For i = 1 to |E |

if G ′ ∪ ei does not contain a cycle with at most c edges:
add ei to E ′
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Analysis

Claim: G ′ does not contain a cycle with at most c edges.

Why?

In other words, G ′ has girth at least c + 1.
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Lemma
The embedding of G into G ′ has distortion at most c.

Proof.
Let {u, v} ∈ E . If {u, v} ∈ E ′, then dG (u, v) = dG ′(u, v).
Otherwise, by construction, there exists a path with at most c
edges between u and v in G ′ (since otherwise we would have
added {u, v} to G ′). All these edges are considered before {u, v},
and thus their length is at most length({u, v}). If follows that
dG ′(u, v) ≤ c · dG (u, v).
It remains to consider the case {u, v} /∈ E . Let P = v1, v2, . . . , vk
be a shortest-path in G between u and v . We have

dG ′(u, v) ≤
k−1∑
i=1

dG ′(vi , vi+1) ≤
k−1∑
i=1

c · length(vi , vi+1)

=
k−1∑
i=1

c · dG (vi , vi+1) = c · dG (u, v)



Lemma
Any graph with n vertices, and girth at least c + 1, contains at
most n + n1+1/bc/2c edges.

Corollary

|E ′| = O(n1+1/bc/2c).
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The girth/density bound

Lemma
Any graph G ′ with n vertices, and girth at least c + 1, contains at
most n + n1+1/bc/2c edges.

Proof.
Assume c = 2k .

Let G ′ = (V ,E ′). Suppose |E ′| = m.
The average degree is d̄ = 2m/n.
There is a subgraph H ⊆ G ′, with minimum degree at least
δ = d̄/2. Why?

I Removing a vertex of degree < d̄/2 does not decrease the
average degree.

Let v0 be a vertex in H. The k-neighborhood of v0 is a tree. Why?
The number of vertices in this tree is at most

1 + δ + δ(δ − 1) + . . .+ δ(δ − 1)k−1 ≥ (δ − 1)k

So, n ≥ (δ − 1)k , and m = δn/2 = δn ≤ n1+1/k + n.
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