5339 - Algorithms design under a geometric lens Spring 2014, CSE, OSU Lecture 1: Introduction

Instructor: Anastasios Sidiropoulos

January 8, 2014

Geometry in algorithm design

► Computational geometry. Computing properties of geometric objects.

Geometry in algorithm design

- Computational geometry. Computing properties of geometric objects.
 - Point sets, polygons, surfaces, terrains, polyhedra, etc.

Geometry in algorithm design

- Computational geometry. Computing properties of geometric objects.
 - ▶ Point sets, polygons, surfaces, terrains, polyhedra, etc.
 - Diameter, volume, traversals, motion planning, etc.
- Geometric interpretation of data.
 - ► Treating input data set as a geometric object / space.

Geometry in algorithm design

- Computational geometry. Computing properties of geometric objects.
 - ▶ Point sets, polygons, surfaces, terrains, polyhedra, etc.
 - Diameter, volume, traversals, motion planning, etc.
- Geometric interpretation of data.
 - ► Treating input data set as a geometric object / space.
 - Optimization / mathematical programming / geometric relaxations.

Computational geometry

Examples of problems

lacktriangle Given a set of points P in some ambient space ${\mathcal S}$

Computational geometry

Examples of problems

- lacktriangle Given a set of points P in some ambient space ${\cal S}$
- Compute efficiently a property of P
 - Diameter
 - Closest Pair
 - Traveling Salesperson Problem (TSP)
 - Minimum Spanning Tree (MST)

Computational geometry

Examples of problems

- lacktriangle Given a set of points P in some ambient space ${\cal S}$
- Compute efficiently a property of P
 - Diameter
 - Closest Pair
 - Traveling Salesperson Problem (TSP)
 - Minimum Spanning Tree (MST)
- ▶ The *difficulty/complexity* of the problem depends on S.
 - Topology
 - Dimension

► Often, data consists of a collection of records, each with multiple attributes.

- Often, data consists of a collection of records, each with multiple attributes.
 - ► Computer vision (e.g. face recognition)

- ► Often, data consists of a collection of records, each with multiple attributes.
 - ► Computer vision (e.g. face recognition)
 - ► Computational biology (e.g. DNA sequences)

- Often, data consists of a collection of records, each with multiple attributes.
 - ► Computer vision (e.g. face recognition)
 - ► Computational biology (e.g. DNA sequences)
 - pandora.com (Music Genome Project: 400 attributes per song)

- Often, data consists of a collection of records, each with multiple attributes.
 - ► Computer vision (e.g. face recognition)
 - ► Computational biology (e.g. DNA sequences)
 - pandora.com (Music Genome Project: 400 attributes per song)
 - Engineering, Medicine, Psychology, Finance, . . .

- ➤ **Similarity search:** Given a "query" record, find the most *similar* one in the data set, e.g.:
 - Find the most similar face.
 - Fingerprint recognition.
 - On-line dating.
 - Personalized medicine.

- ➤ **Similarity search:** Given a "query" record, find the most *similar* one in the data set, e.g.:
 - Find the most similar face.
 - ► Fingerprint recognition.
 - On-line dating.
 - Personalized medicine.
- ► **Clustering:** Partition the set of records into similar sets, e.g.:
 - Partition songs into music genres.

- ➤ **Similarity search:** Given a "query" record, find the most *similar* one in the data set, e.g.:
 - Find the most similar face.
 - ► Fingerprint recognition.
 - On-line dating.
 - Personalized medicine.
- ▶ **Clustering:** Partition the set of records into similar sets, e.g.:
 - Partition songs into music genres.
- Compressed representations:
 - Compute succinct approximate representation of the data.
 - Dimensionality reduction.

- ➤ **Similarity search:** Given a "query" record, find the most *similar* one in the data set, e.g.:
 - Find the most similar face.
 - ► Fingerprint recognition.
 - On-line dating.
 - Personalized medicine.
- ► **Clustering:** Partition the set of records into similar sets, e.g.:
 - Partition songs into music genres.
- Compressed representations:
 - Compute succinct approximate representation of the data.
 - Dimensionality reduction.
- Sketching: Summarization
 - Finding a (very small) subset of representative records.

- ➤ **Similarity search:** Given a "query" record, find the most *similar* one in the data set, e.g.:
 - Find the most similar face.
 - ► Fingerprint recognition.
 - On-line dating.
 - Personalized medicine.
- ► **Clustering:** Partition the set of records into similar sets, e.g.:
 - Partition songs into music genres.
- Compressed representations:
 - Compute succinct approximate representation of the data.
 - Dimensionality reduction.
- Sketching: Summarization
 - Finding a (very small) subset of representative records.
- **.** . . .

Dramatis personae

Most data comes in two possible forms:

- ► Metric spaces
- Graphs

Metric spaces

A metric space is a pair (X, ρ) , where:

- ▶ *X* is the set of points.
- ▶ $\rho: X \times X \to \mathbb{R}_{\geq 0}$ satisfies:
 - ▶ For all $x, y \in X$, we have $\rho(x, y) = 0$ if and only if x = y.
 - ▶ For all $x, y \in X$, we have $\rho(x, y) = \rho(y, x)$.
 - ▶ For all $x, y, z \in X$, we have $\rho(x, y) \le \rho(x, z) + \rho(z, y)$.

Metric spaces

A metric space is a pair (X, ρ) , where:

- X is the set of points.
- ▶ $\rho: X \times X \to \mathbb{R}_{\geq 0}$ satisfies:
 - ▶ For all $x, y \in X$, we have $\rho(x, y) = 0$ if and only if x = y.
 - ▶ For all $x, y \in X$, we have $\rho(x, y) = \rho(y, x)$.
 - ▶ For all $x, y, z \in X$, we have $\rho(x, y) \le \rho(x, z) + \rho(z, y)$.

Examples of metric spaces?

Graphs as metric spaces

Let G = (V, E) be a graph. We will often endow G with non-negative edge lengths

length : $E o \mathbb{R}_{\geq 0}$

Graphs as metric spaces

Let G = (V, E) be a graph. We will often endow G with non-negative edge lengths

length :
$$E o \mathbb{R}_{\geq 0}$$

Then, G gives rise to a *shortest-path metric* d_G , where for any $u, v \in V$,

$$d_G(u, v) = \min_{P: path from u to v} length(P),$$

where

$$\operatorname{length}(v_1,\ldots,v_k) = \sum_{i=1}^{k-1} \operatorname{length}(\{v_i,v_{i+1}\}).$$

Graphs as metric spaces

Let G = (V, E) be a graph. We will often endow G with non-negative edge lengths

length :
$$E o \mathbb{R}_{\geq 0}$$

Then, G gives rise to a *shortest-path metric* d_G , where for any $u, v \in V$,

$$d_G(u, v) = \min_{P: path from u \text{ to } v} length(P),$$

where

$$\operatorname{length}(v_1,\ldots,v_k) = \sum_{i=1}^{k-1} \operatorname{length}(\{v_i,v_{i+1}\}).$$

Examples of shortest-path metrics?

One possible interpretation (but not the only one!):

▶ Suppose each record has *d* numerical attributes.

One possible interpretation (but not the only one!):

- ► Suppose each record has *d* numerical attributes.
- ▶ Treat each record as a point in \mathbb{R}^d .

One possible interpretation (but not the only one!):

- ► Suppose each record has *d* numerical attributes.
- ▶ Treat each record as a point in \mathbb{R}^d .
- ℓ_p -distance corresponds to dissimilarity.

One possible interpretation (but not the only one!):

- Suppose each record has d numerical attributes.
- ▶ Treat each record as a point in \mathbb{R}^d .
- ℓ_p -distance corresponds to dissimilarity.

▶ What is the right norm?

What is the right norm?

▶ The input might not always be Euclidean.

What is the right norm?

- ▶ The input might not always be Euclidean.
- E.g. edit-distance:
 - ▶ Metric space (X, ρ) .
 - $X = \{0, 1\}^d$, for some d > 0.
 - $\rho(x, y) = \min \# \text{ of insertions/deletions to obtain } y \text{ from } x.$

What is the right norm?

- ▶ The input might not always be Euclidean.
- E.g. edit-distance:
 - Metric space (X, ρ) .
 - $X = \{0, 1\}^d$, for some d > 0.
 - $ho(x,y) = \min \# \text{ of insertions/deletions to obtain } y \text{ from } x.$
- Do we need completely different methods for each space?

Metric spaces $M = (X, \rho)$, $M' = (X', \rho')$.

A metric embedding is a mapping $f: X \to X'$.

The distortion of f is a parameter that quantifies how $good\ f$ is.

Metric spaces $M = (X, \rho)$, $M' = (X', \rho')$.

A metric embedding is a mapping $f: X \to X'$.

The distortion of f is a parameter that quantifies how $good\ f$ is.

low distortion

Metric spaces $M = (X, \rho)$, $M' = (X', \rho')$.

A metric embedding is a mapping $f: X \to X'$.

The distortion of f is a parameter that quantifies how $good\ f$ is.

low distortion

high distortion

Metric spaces $M = (X, \rho)$, $M' = (X', \rho')$. A metric embedding is a mapping $f : X \to X'$.

$$\mathsf{distortion}(f) = \left(\max_{x,y \in X} \frac{\rho'(f(x),f(y))}{\rho(x,y)}\right) \cdot \left(\max_{x',y' \in X} \frac{\rho(x',y')}{\rho'(f(x'),f(y'))}\right)$$

▶ Can we *simplify* a space S, while preserving its geometry?

- ▶ Can we *simplify* a space S, while preserving its geometry?
- ▶ Can we embed S into a *simpler* space S', with low distortion?

- ▶ Can we *simplify* a space S, while preserving its geometry?
- ▶ Can we embed S into a *simpler* space S', with low distortion?
- Is the embedding efficiently computable?

- ▶ Can we *simplify* a space S, while preserving its geometry?
- ▶ Can we embed S into a *simpler* space S', with low distortion?
- Is the embedding efficiently computable?
- If this is possible, then we can obtain faster algorithms!

Simplification via embeddings

Simplification via embeddings

Simplification via embeddings

Question: Can we embed a complicated space into some simpler space, with small distortion?

Theorem (Bourgain '85)

Theorem (Bourgain '85)

Any n-point metric space admits an embedding into Euclidean space with distortion $O(\log n)$.

▶ I.e. every point x is mapped to some vector in $f(x) \in \mathbb{R}^d$, for some finite d.

Theorem (Bourgain '85)

- ▶ I.e. every point x is mapped to some vector in $f(x) \in \mathbb{R}^d$, for some finite d.
- ▶ The new distance is $||f(x) f(y)||_2$.

Theorem (Bourgain '85)

- ▶ I.e. every point x is mapped to some vector in $f(x) \in \mathbb{R}^d$, for some finite d.
- ▶ The new distance is $||f(x) f(y)||_2$.
- ▶ Corollary: Every n-point metric space can be stored using linear space, with error/distortion O(log n).

Theorem (Bourgain '85)

- ▶ I.e. every point x is mapped to some vector in $f(x) \in \mathbb{R}^d$, for some finite d.
- ▶ The new distance is $||f(x) f(y)||_2$.
- Corollary: Every n-point metric space can be stored using linear space, with error/distortion O(log n).
- This embedding is efficiently computable.

Theorem (Bourgain '85)

- ▶ I.e. every point x is mapped to some vector in $f(x) \in \mathbb{R}^d$, for some finite d.
- ▶ The new distance is $||f(x) f(y)||_2$.
- Corollary: Every n-point metric space can be stored using linear space, with error/distortion O(log n).
- This embedding is efficiently computable.
- Problems in general metrics can be reduced to Euclidean space.

Embedding metric space into graphs

Any n-point metric space can be embedded into a n-vertex graph, with distortion 1.

Embedding metric space into graphs

Any n-point metric space can be embedded into a n-vertex graph, with distortion 1.

Storing a graph on n vertices requires $O(n^2)$ space.

Embedding metric space into graphs

Any n-point metric space can be embedded into a n-vertex graph, with distortion 1.

Storing a graph on n vertices requires $O(n^2)$ space. Can we embed into *sparse* graphs?

Theorem ([Peleg and Schäffer])

For any $c \ge 1$, any n-point metric space admits an embedding with distortion c into a graph with $O(n^{1+1/c})$ edges.

Corollary

Any n-point metric space admits an embedding with distortion $O(\log n)$ into a graph with O(n) edges.

Let
$$G = (V, E)$$
, and suppose $|E| = \binom{n}{2}$.

Let G = (V, E), and suppose $|E| = \binom{n}{2}$. We will embed G into some graph G' = (V, E') with $|E'| \ll |E|$, with distortion at most some c > 1.

Let G = (V, E), and suppose $|E| = \binom{n}{2}$.

We will embed G into some graph G' = (V, E') with $|E'| \ll |E|$, with distortion at most some c > 1.

Observation: We may assume that for any $\{u, v\} \in E$, we have

$$length(\{u,v\}) = d_G(u,v)$$

(if not, setting length($\{u, v\}$) = $d_G(u, v)$ does not change the shortest-path metric).

Let G = (V, E), and suppose $|E| = \binom{n}{2}$.

We will embed G into some graph G' = (V, E') with $|E'| \ll |E|$, with distortion at most some c > 1.

Observation: We may assume that for any $\{u, v\} \in E$, we have

$$length({u,v}) = d_G(u,v)$$

(if not, setting length($\{u, v\}$) = $d_G(u, v)$ does not change the shortest-path metric).

Sort E in non-decreasing length, i.e.

$$length(e_1) \leq length(e_2) \leq \ldots \leq length(e_{|E|}).$$

Let G = (V, E), and suppose $|E| = \binom{n}{2}$.

We will embed G into some graph G' = (V, E') with $|E'| \ll |E|$, with distortion at most some c > 1.

Observation: We may assume that for any $\{u, v\} \in E$, we have

$$length({u,v}) = d_G(u,v)$$

(if not, setting length($\{u, v\}$) = $d_G(u, v)$ does not change the shortest-path metric).

Sort E in non-decreasing length, i.e.

$$length(e_1) \leq length(e_2) \leq \ldots \leq length(e_{|E|}).$$

Initialize $E' = \emptyset$.

Let G = (V, E), and suppose $|E| = \binom{n}{2}$.

We will embed G into some graph G' = (V, E') with $|E'| \ll |E|$, with distortion at most some c > 1.

Observation: We may assume that for any $\{u, v\} \in E$, we have

$$length({u,v}) = d_G(u,v)$$

(if not, setting length($\{u, v\}$) = $d_G(u, v)$ does not change the shortest-path metric).

Sort *E* in non-decreasing length, i.e.

$$length(e_1) \leq length(e_2) \leq \ldots \leq length(e_{|E|}).$$

Initialize $E' = \emptyset$.

For i = 1 to |E|

if $G' \cup e_i$ does not contain a cycle with at most c edges:

add e_i to E'

Analysis

Claim: G' does not contain a cycle with at most c edges.

Analysis

Claim: G' does not contain a cycle with at most c edges.

Why?

Analysis

Claim: G' does not contain a cycle with at most c edges.

Why?

In other words, G' has girth at least c + 1.

Lemma

The embedding of G into G' has distortion at most c.

Proof.

Let $\{u,v\} \in E$. If $\{u,v\} \in E'$, then $d_G(u,v) = d_{G'}(u,v)$. Otherwise, by construction, there exists a path with at most c edges between u and v in G' (since otherwise we would have added $\{u,v\}$ to G'). All these edges are considered before $\{u,v\}$, and thus their length is at most length($\{u,v\}$). If follows that $d_{G'}(u,v) \leq c \cdot d_G(u,v)$.

It remains to consider the case $\{u, v\} \notin E$. Let $P = v_1, v_2, \dots, v_k$ be a shortest-path in G between u and v. We have

$$d_{G'}(u, v) \le \sum_{i=1}^{k-1} d_{G'}(v_i, v_{i+1}) \le \sum_{i=1}^{k-1} c \cdot \operatorname{length}(v_i, v_{i+1})$$

$$= \sum_{i=1}^{k-1} c \cdot d_G(v_i, v_{i+1}) = c \cdot d_G(u, v)$$

Lemma

Any graph with n vertices, and girth at least c+1, contains at most $n+n^{1+1/\lfloor c/2\rfloor}$ edges.

Lemma

Any graph with n vertices, and girth at least c+1, contains at most $n+n^{1+1/\lfloor c/2\rfloor}$ edges.

Corollary

$$|E'| = O(n^{1+1/\lfloor c/2\rfloor}).$$

Lemma

Any graph G' with n vertices, and girth at least c+1, contains at most $n+n^{1+1/\lfloor c/2\rfloor}$ edges.

Proof.

Assume c = 2k.

Lemma

Any graph G' with n vertices, and girth at least c+1, contains at most $n+n^{1+1/\lfloor c/2\rfloor}$ edges.

Proof.

Assume c = 2k.

Let G' = (V, E'). Suppose |E'| = m.

The average degree is $\bar{d} = 2m/n$.

There is a subgraph $H \subseteq G'$, with minimum degree at least

$$\delta = \bar{d}/2$$
. Why?

Lemma

Any graph G' with n vertices, and girth at least c+1, contains at most $n+n^{1+1/\lfloor c/2\rfloor}$ edges.

Proof.

Assume c = 2k.

Let G' = (V, E'). Suppose |E'| = m.

The average degree is $\bar{d} = 2m/n$.

There is a subgraph $H \subseteq G'$, with *minimum* degree at least $\delta = \bar{d}/2$. Why?

▶ Removing a vertex of degree $< \bar{d}/2$ does not decrease the average degree.

Lemma

Any graph G' with n vertices, and girth at least c+1, contains at most $n+n^{1+1/\lfloor c/2\rfloor}$ edges.

Proof.

Assume c = 2k.

Let G' = (V, E'). Suppose |E'| = m.

The average degree is $\bar{d} = 2m/n$.

There is a subgraph $H \subseteq G'$, with *minimum* degree at least $\delta = \bar{d}/2$. Why?

▶ Removing a vertex of degree $< \bar{d}/2$ does not decrease the average degree.

Let v_0 be a vertex in H. The k-neighborhood of v_0 is a tree. Why?

Lemma

Any graph G' with n vertices, and girth at least c+1, contains at most $n+n^{1+1/\lfloor c/2\rfloor}$ edges.

Proof.

Assume c = 2k.

Let G' = (V, E'). Suppose |E'| = m.

The average degree is $\bar{d} = 2m/n$.

There is a subgraph $H \subseteq G'$, with *minimum* degree at least $\delta = \bar{d}/2$. Why?

▶ Removing a vertex of degree $< \bar{d}/2$ does not decrease the average degree.

Let v_0 be a vertex in H. The k-neighborhood of v_0 is a tree. Why? The number of vertices in this tree is at most

$$1 + \delta + \delta(\delta - 1) + \ldots + \delta(\delta - 1)^{k-1} \ge (\delta - 1)^k$$

Lemma

Any graph G' with n vertices, and girth at least c + 1, contains at most $n + n^{1+1/\lfloor c/2 \rfloor}$ edges.

Proof.

Assume c = 2k.

Let G' = (V, E'). Suppose |E'| = m.

The average degree is $\bar{d} = 2m/n$.

There is a subgraph $H \subseteq G'$, with minimum degree at least $\delta = \bar{d}/2$. Why?

• Removing a vertex of degree $< \bar{d}/2$ does not decrease the average degree.

Let v_0 be a vertex in H. The k-neighborhood of v_0 is a tree. Why? The number of vertices in this tree is at most

$$1 + \delta + \delta(\delta - 1) + \ldots + \delta(\delta - 1)^{k-1} \ge (\delta - 1)^k$$

So,
$$n \geq (\delta - 1)^k$$
, and $m = \delta n/2 = \delta n \leq n^{1+1/k} + n$.

